One candela per steradian is termed a lumen, which is the measure of light intensity people are most familiar with One foot candle is equivalent to one lumen per square foot
Answer:
Explanation:
Given that:
Pressure = 791 mmHg
Temperature = 20.0°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (20 + 273.15) K = 293.15 K
T = 293.15 K
Volume = 100 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 62.3637 L.mmHg/K.mol
Applying the equation as:
791 mmHg × 1.14 L = n × 62.3637 L.mmHg/K.mol × 293.15 K
⇒n of
produced = 0.0493 moles
According to the reaction:-

1 mole of carbon dioxide is produced 1 mole of calcium carbonate reacts
0.0493 mole of carbon dioxide is produced 0.0493 mole of calcium carbonate reacts
Moles of calcium carbonate reacted = 0.0493 moles
Molar mass of
= 100.0869 g/mol
The formula for the calculation of moles is shown below:
Thus,

Impure sample mass = 5.28 g
Percent mass is percentage by the mass of the compound present in the sample.
<u>Given:</u>
Mass of calcium nitrate (Ca(NO3)2) = 96.1 g
<u>To determine:</u>
Theoretical yield of calcium phosphate, Ca3(PO4)2
<u>Explanation:</u>
Balanced Chemical reaction-
3Ca(NO3)2 + 2Na3PO4 → 6NaNO3 + Ca3(PO4)2
Based on the reaction stoichiometry:
3 moles of Ca(NO3)2 produces 1 mole of Ca3(PO4)2
Now,
Given mass of Ca(NO3)2 = 96.1 g
Molar mass of Ca(NO3)2 = 164 g/mol
# moles of ca(NO3)2 = 96.1/164 = 0.5859 moles
Therefore, # moles of Ca3(PO4)2 produced = 0.0589 * 1/3 = 0.0196 moles
Molar mass of Ca3(PO4)2 = 310 g/mol
Mass of Ca3(PO4)2 produced = 0.0196 * 310 = 6.076 g
Ans: Theoretical yield of Ca3(PO4)2 = 6.08 g
What dont u understand about lewis dot structures???.
.how to determine the number of dots ..or
Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L