Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
I have no skins for you my brother and my girlfriend and my uncle are going out and have you come on the house for me to do you have to get on your phone

Here the base is a benzoate ion, which is a weak base and reacts with water.

The equation indicates that for every mole of OH- that is produced , there is one mole of C6H5COOH produced.
Therefore [OH-] = [C6H5COOH]
In the question value of PH is given and by using pH we can calculate pOH and then using pOH we can calculate [OH-]
pOH = 14 - pH
pH given = 9.04
pOH = 14-9.04 = 4.96
pOH = -log[OH-] or ![[OH^{-}] = 10^{^{-pOH}}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%2010%5E%7B%5E%7B-pOH%7D%7D%20)
![[OH^{-}] = 10^{^{-4.96}}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%2010%5E%7B%5E%7B-4.96%7D%7D%20)
![[OH^{-}] = 1.1\times 10^{-5}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%201.1%5Ctimes%2010%5E%7B-5%7D%20)
The base dissociation equation kb = 
![kb =\frac{[C6H5COOH][OH^{-}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%20kb%20%3D%5Cfrac%7B%5BC6H5COOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D)
H2O(l) is not included in the 'kb' equation because 'solid' and 'liquid' are taken as unity that is 1.
Value of Kb is given = 
And value of [OH-] we have calculated as
and value of C6H5COOH is equal to OH-
Now putting the values in the 'kb' equation we can find the concentration of C6H5COO-
![kb =\frac{[C6H5COOH][OH^{-}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%20kb%20%3D%5Cfrac%7B%5BC6H5COOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D)
![1.6\times 10^{-10} = \frac{[1.1\times 10^{-5}][1.1\times 10^{-5}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%201.6%5Ctimes%2010%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D%20)
![[C6H5COO^{-}] = \frac{[1.1\times 10^{-5}][1.1\times 10^{-5}]}{1.6\times 10^{-10}}](https://tex.z-dn.net/?f=%20%5BC6H5COO%5E%7B-%7D%5D%20%3D%20%5Cfrac%7B%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B1.6%5Ctimes%2010%5E%7B-10%7D%7D%20)
or 
So, Concentration of NaC6H5COO would also be 0.76 M and volume is given to us 0.50 L , now moles can we calculated as : Moles = M X L
Moles of NaC6H5COO would be = 
Moles of NaC6H5COO (sodium benzoate) = 0.38 mol
Answer:
A
Explanation:
When the particles where shot through gold foil, he found that most of the particles went through. Some scattered in various directions, and a few were even deflected back towards the source.
The answer is the last option.