Step-by-step explanation:
(a) If his second pass is the first that he completes, that means he doesn't complete his first pass.
P = P(not first) × P(second)
P = (1 − 0.694) (0.694)
P ≈ 0.212
(b) This time we're looking for the probability that he doesn't complete the first but does complete the second, or completes the first and not the second.
P = P(not first) × P(second) + P(first) × P(not second)
P = (1 − 0.694) (0.694) + (0.694) (1 − 0.694)
P ≈ 0.425
(c) Finally, we want the probability he doesn't complete either pass.
P = P(not first) × P(not second)
P = (1 − 0.694) (1 − 0.694)
P ≈ 0.094
Simplify the following:
(3 sqrt(2) - 4)/(sqrt(3) - 2)
Multiply numerator and denominator of (3 sqrt(2) - 4)/(sqrt(3) - 2) by -1:
-(3 sqrt(2) - 4)/(2 - sqrt(3))
-(3 sqrt(2) - 4) = 4 - 3 sqrt(2):
(4 - 3 sqrt(2))/(2 - sqrt(3))
Multiply numerator and denominator of (4 - 3 sqrt(2))/(2 - sqrt(3)) by sqrt(3) + 2:
((4 - 3 sqrt(2)) (sqrt(3) + 2))/((2 - sqrt(3)) (sqrt(3) + 2))
(2 - sqrt(3)) (sqrt(3) + 2) = 2×2 + 2 sqrt(3) - sqrt(3)×2 - sqrt(3) sqrt(3) = 4 + 2 sqrt(3) - 2 sqrt(3) - 3 = 1:
((4 - 3 sqrt(2)) (sqrt(3) + 2))/1
((4 - 3 sqrt(2)) (sqrt(3) + 2))/1 = (4 - 3 sqrt(2)) (sqrt(3) + 2):
Answer: (4 - 3 sqrt(2)) (sqrt(3) + 2)
In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials.
Answer:
1.45
2. 135
Explanation:
1. With a triangle all angles have to add up to 180, so what you would do is add up both angles we already know (43+92=135), then we subtract the sum from 180, (180-135=45) now you know the third angle.
2. Just like a triangle, when finding angles on a line, it has to add up to 180. We already know that point M has an angle of 45 from the last problem, so all we have to do is subtract 45 from 180 (180-45=135). THats the measurement on TMS