Hello! Let me try to answer this :)
Thanks and please correct if there are any mistakes ^ ^
<u>Answer:</u> The mass of solution having 768 mg of KCN is 426.66 grams.
<u>Explanation:</u>
We are given:
0.180 mass % of KCN solution.
0.180 %(m/m) KCN solution means that 0.180 grams of KCN is present in 100 gram of solution.
To calculate the mass of solution having 768 mg of KCN or 0.786 g of KCN (Conversion factor: 1 g = 1000 mg)
Using unitary method:
If 0.180 grams of KCN is present in 100 g of solution.
So, 0.768 grams of KCN will be present in =
of solution.
Hence, the mass of solution having 768 mg of KCN is 426.66 grams.
This reaction would give rise to two products.
- 2-bromo-3-methylhexane, and
- 3-bromo-3-methylhexane.
However, 2-bromo-3-methylhexane would be more common than 3-bromo-3-methylhexane among the products.
The hydrogen atom in a hydrogen bromide molecule carries a partial positive charge. It is attracted to the double bond region with a high electron density. The hydrogen-bromine bond breaks when HBr gets too close to a double bond to produces a proton
and a bromide ion
.
The proton would attack the double bond to produce a carbocation. It could attach itself to either the second or the third carbon atom.
Carbocations are unstable and might decompose over time. The first carbocation is more stable than the second for having three alkyl groups- i.e., straight carbon chains- attached to the center of the positive charge. Alkyl groups have stabilizing positive induction effect on positively-charged carbon. The second carbocation has only two, and is therefore not as stable. The first carbocation thus has the greatest chance to react with a bromide ion to produce a stable halocarbon.
Bromide ions are negatively charged. They attach themselves to carbocations at the center of positive charge. Adding a bromide ion to the first carbocation would produce 3-bromo-3-methylhexane whereas adding to the second produces 2-bromo-3-methylhexane.
The <em>most likely</em> product of this reaction is therefore 3-bromo-3-methylhexane.
Hey there!
<span>Use the equation of Clapeyron:
</span>
T in kelvin :
26 + 273.15 => 299.15 K
R = 0.082
V = 10.2 L
P = 0.98 atm
number of moles :
P *V = n * R * T
0.98 * 10.2 = n * 0.082 * 299.15
9.996 = n * 24.5303
n = 9.996 / 24.5303
n = 0.4074 moles
Therefore:
Molar mass H2O = 18.01 g/mol
1 mole H2O ------------- 18.01 g
0.4074 moles ----------- m
m = 0.4074 * 18.01 / 1
m = 7.339 g of H2O