Explanation:
The planet Mars has two moons. Phobos and Delmos (i) phobos has period `7` hours, `39` minutes and an orbital radius of `9.4 xx 10^(3) km`. Calculate the mass of Mars. (ii) Assume that Earth and mars move in a circular orbit around the sun, with the martian orbit being `1.52` times the orbital radius of the Earth. What is the length of the martian year in days? `(G = 6.67 xx 10^(-11) Nm^(2) kg^(-2))`
Answer:
The atmosphere is the largest reservoir of the nitrogen as it is composed of 78% of Nitrogen. Although 78%, this is not used by the organisms directly as the nitrogen molecule exists in nature in the form of divalent joined via triple bonds.
These triple bonds require a great amount of energy to be broken and used. Only a few prokaryotic organisms called nitrogen-fixing bacteria have the capability to break these triple bonds as they contain enzymes-nitrogenase complex which converts the atmospheric nitrogen to usable forms like ammonia, nitrates and nitrites. About 92% of the atmospheric nitrogen is fixed through this way rest through thunderstorms and Haber's process.
Thus, nitrogen-fixing bacteria is the answer.
Answer:
its A.
Explanation:
theres 24 0s before the 167 and its before so its negative:) hope this helps
Answer:
A)100mL B)50mL C)The second option D)Hypoosmotic Environment
Explanation:
The average Na concentration in the seas and oceans of the world is around 3,5% which mean that in 100 ml of sea water, there is around 3,5 grams of Na.
The weight of one mol of NaCl is 58,44 grams. For 3,5 grams of NaCl, we get 3,5/58,44 = 0,060 mol of NaCl which is 0,060x1000 = 60 mmol/100ml. According to this and the information given in the question about the secretion of the salt glands', if the average sodium concentration is 600mmol/L, we have 60*10 = 600mmol/L so it would take 100 mililiters of water to excrete.
If the average Na concentration of the salt gland's secretion were 300 mmol/L, only 50 mililiters of water would be needed to excrete the same sodium load.
The second option of secretion is hyperosmotic to seawater because the concentration is higher.
Osmoregulation is the process of balancing the amount of water and salt between the body of the organism and its surrounding environment. For salt glands to be advantageous for osmoregulation, they need to be in a hypoosmotic environment.
I hope this answer helps.