The corcumference C of a circle is C= 2 x pie x radius
So radius= C/(2pie)
Volume of cylinder= pie x r(squared) x h
The missing side length should be 22. Add 13.5 to 14.5 and you should get 28. Subtract 28 from the total perimeter (50) to get 22.
<span>, y+2 = (x^2/2) - 2sin(y)
so we are taking the derivative y in respect to x so we have
dy/dx use chain rule on y
so y' = 2x/2 - 2cos(y)*y'
</span><span>Now rearrange it to solve for y'
y' = 2x/2 - 2cos(y)*y'
0 = x - 2cos(y)y' - y'
- x = 2cos(y)y' - y'
-x = y'(2cos(y) - 1)
-x/(2cos(y) - 1) = y'
</span><span>we know when f(2) = 0 so thus y = 0
so when
f'(2) = -2/(2cos(0)-1)
</span><span>2/2 = 1
</span><span>f'(2) = -2/(2cos(0)-1)
cos(0) = 1
thus
f'(2) = -2/(2(1)-1)
= -2/-1
= 2
f'(2) = 2
</span>
Answer:
school building, so the fourth side does not need Fencing. As shown below, one of the sides has length J.‘ (in meters}. Side along school building E (a) Find a function that gives the area A (I) of the playground {in square meters) in
terms or'x. 2 24(15): 320; - 2.x (b) What side length I gives the maximum area that the playground can have? Side length x : [1] meters (c) What is the maximum area that the playground can have? Maximum area: I: square meters
Step-by-step explanation: