Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The probability of passing the test is 
The sample size is n = 10
Generally the distribution of the comprehensive testing of equipment follows a binomial distribution
i.e

and the probability distribution function for binomial distribution is

Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the probability that at least 9 pass the test is mathematically represented as

=> ![P(X \ge 9) = [^{10}C_9 * (0.95)^9 * (1- 0.95)^{10-9}] + [^{10}C_{10} * (0.95)^{10} * (1- 0.95)^{10-10}]](https://tex.z-dn.net/?f=P%28X%20%5Cge%209%29%20%3D%20%20%5B%5E%7B10%7DC_9%20%2A%20%20%280.95%29%5E9%20%2A%20%20%281-%200.95%29%5E%7B10-9%7D%5D%20%2B%20%5B%5E%7B10%7DC_%7B10%7D%20%2A%20%20%280.95%29%5E%7B10%7D%20%2A%20%20%281-%200.95%29%5E%7B10-10%7D%5D)
=> ![P(X \ge 9) = [0.3151] + [0.5987]](https://tex.z-dn.net/?f=P%28X%20%5Cge%209%29%20%3D%20%20%5B0.3151%5D%20%2B%20%5B0.5987%5D%20)
=> 
Answer:
2
Step-by-step explanation:
do 9 plus negative 5 then divide by 2 to get your answer
The correct answer is:
[D]: "

" .
__________________________________________________Explanation:__________________________________________________
;
Simplify the "denominator" ; → (b + 2b = 1b + 2b = 3b) ;
and rewrite:

;
Cancel out the "b" in the "numerator" to a "1" ;
and cancel the "3b" in the "denominator to a "3" ;
{since: "b ÷ b = 1 "; and since: "3b ÷ b = 3" } ;
and rewrite as:
____________________________________________________ 
;
____________________________________________________ → which is:
Answer choice: [D]: "
" .
____________________________________________________
Answer:

Step-by-step explanation:
3t + 2 < 7 OR −4t + 5 < 1
- 2 - 2 - 5 - 5
___________________

**Whenever you divide\multiply by a <em>negative</em><em> </em><em>integer</em>, you reverse the inequality symbol given to you <em>initially</em>.
<u>Extended</u><u> </u><u>Information</u><u> </u><u>on</u><u> </u><u>Inequalities</u>
≤, ≥ [dark circle with a dark line (<em>brackets</em><em> </em>when writing in <em>Interval</em><em> </em><em>Notation</em>)]
<, > [<em>light</em><em> </em><em>circle</em><em> </em>with a <em>dashed</em><em> </em><em>line</em><em> </em>(<em>parenthese</em><em>s</em><em> </em>when writing in <em>Interval</em><em> </em><em>Notation</em>)]
I am delighted to assist you at any time.
<em>As</em><em> </em><em>you</em><em> </em><em>can see</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>above</em><em> </em><em>graph</em><em>,</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>is</em><em> </em><em>connected</em><em> </em><em>ALTOGETHER</em><em>.</em><em> </em><em>Be</em><em> </em><em>aware</em><em> </em><em>that</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>not</em><em> </em><em>ALWAYS</em><em> </em><em>be</em><em> </em><em>the</em><em> </em><em>case</em><em> </em><em>because</em><em> </em><em>a</em><em> </em><em>majourity</em><em> </em><em>of</em><em> </em><em>these</em><em> </em><em>graphs</em><em> </em><em>are</em><em> </em><em>seperated</em><em>,</em><em> </em><em>pointing</em><em> </em><em>in</em><em> </em><em>OPPOSITE</em><em> </em>directions.