You need to use Planck's law:
E = h·υ = (h·c)/λ
Without making all the calculations, a fraction is bigger than another when the denominator is smaller. Therefore you need to find the smallest wavelength (λ) which is 450nm.
You could also be helped by colors: in order of decreasing energy, you have blue - green - yellow - red.
In any case, the correct answer is a).
false. all obejects in motion have friction
A) The power delivered to the lines is

And the voltage at which the lines work is

Since the power delivered is the product between the voltage and the current:

We can find the current flowing in the lines:

b) The voltage change along each line can be found by using Ohm's law:

c) The power wasted as heat along each line is given by:

And since we have 2 lines, the total power wasted as heat in both lines is
Answer:
- The velocity component in the flow direction is much larger than that in the normal direction ( A )
- The temperature and velocity gradients normal to the flow are much greater than those along the flow direction ( b )
Explanation:
For a steady two-dimensional flow the boundary layer approximations are The velocity component in the flow direction is much larger than that in the normal direction and The temperature and velocity gradients normal to the flow are much greater than those along the flow direction
assuming Vx ⇒ V∞ ⇒ U and Vy ⇒ u from continuity equation we know that
Vy << Vx