Answer:
The value is 
Explanation:
From the question we are told that
The velocity of the each of the three cars is 
The velocity of the fourth car is 
The initial velocity of the fifth car 
Generally from the law of momentum conservation we have that
![m_1 u_1 + m_2 u_2 + m_3 u_3 +m_4u_4 + m_5u_5 = [m_1 + m_2 + m_3 +m_4+ m_5]v](https://tex.z-dn.net/?f=m_1%20u_1%20%2B%20m_2%20u_2%20%2B%20m_3%20u_3%20%2Bm_4u_4%20%2B%20m_5u_5%20%3D%20%20%5Bm_1%20%20%20%2B%20m_2%20%2B%20m_3%20%2Bm_4%2B%20m_5%5Dv)
Given that the cars are identical then their mass will be the same
i.e

=> ![[u_1 + u_2 + u_3 +u_4 + u_5]m = 5mv](https://tex.z-dn.net/?f=%5Bu_1%20%2B%20u_2%20%2B%20%20u_3%20%2Bu_4%20%2B%20u_5%5Dm%20%3D%20%205mv)
=> 
= > 
Answer:
The displacement of the same mass on the same spring on the Moon is 0.05 m.
Explanation:
Given;
mass suspended from one end of the spring, m = 0.500 kg
displacement on the spring on Earth, x = 0.3 m
Apply Newton's second law of motion;
F = ma = mg
where;
m is mass on the spring
g is acceleration due to gravity
Also, apply Hook's law;
F = Kx
where;
K is force constant
x is extension or diplacement of the spring
Combine the two equations from the two laws;
mg = kx
when the spring in on Earth;
0.5 x 9.8 = 0.3k
4.9 = 0.3k
k = 4.9 / 0.3
k = 16.333 N/m
when the spring is on moon;
mg = kx
mass is the same = 0.5 kg
acceleration due to gravity on moon = ¹/₆ that of Earth = ¹/₆ x 9.8 m/s²
0.5 (¹/₆ x 9.8) = 16.333 x
0.8167 = 16.333 x
x = 0.8167 / 16.333
x = 0.05 m
Therefore, the displacement of the same mass on the same spring on the Moon is 0.05 m.
Answer:
L= 0.059 mH
Explanation:
Given that
R = 855 Ω and C = 6.25 μF
V= 84 V
Frequency
ω = 51900 1/s
We know that

L=Inductance
C=Capacitance
ω =angular Frequency
ω² L C =1
(51900)² x L x 6.25 x 10⁻⁶ = 1
L= 5.99 x 10⁻⁵ H
L= 0.059 mH
Explanation:
C. neutron.
it does not contain ionizing characteristics.
hope it helps. :)
Here's a perfect example of a stable and unstable system.