Answer:
It works by adding an engine, a transmission, car batteries, an extra strong frame in case of a crash, and much more needed things. When it races, The rubber often burns a lot, because of the high speeds that it goes, so that is why they so often change the tires. They give it a full tank of gas, which is basically like the car's idea of food and water. A NASCAR must have a trong engine to go so fast in order to win a race.
Explanation:
Just think of it like building a lego car just hot gluing the legos together and seeing if it breaks.
Answer:
Velocity: +ve, Acceleration: -ve
Explanation:
Here I've considered downward direction as positive direction.
Answer:
it relates to the light propensity to travel over one straight line without having any interference in its trajectory
Explanation:
That depends on what quantity is graphed.
It also depends on what kind of acceleration is taking place ...
continuous change of speed or continuous change of direction.
-- If the graph shows speed vs time, and the acceleration is a change
in speed, then the graph is a connected series of straight-line pieces.
Each straight piece slopes up if speed is increasing, or down if speed
is decreasing.
-- If the graph shows speed vs time, and the acceleration is a change in
direction only, then the graph is a straight horizontal line, since speed is
constant.
-- If the graph shows direction vs time, and the acceleration is a change
in speed only, then the graph is a straight horizontal line, since direction
is constant.
-- If the graph shows direction vs time, and the acceleration is a change
in direction, then the graph is a connected series of pieces of line.
Each piece may be straight if the direction is changing at a constant rate,
or curved if the direction is changing at a rate which grows or shrinks.
Each piece may slope up if the angle that defines the direction is growing,
or may slope down if the angle that defines the direction is decreasing.
-- If the graph shows distance vs time, and the acceleration is a
change in speed, then the graph is a connected series of pieces
of curves. Each piece curves up if speed is increasing, or down if
speed is decreasing.
-- If the graph shows distance vs time, and the acceleration is a change
in direction only, then the graph is a straight line sloping up, since speed
is constant.
Answer:
<h2>0.39m/s^2</h2>
Explanation:
Step one:
given data
mass m= 300kg
applied force F= 1000N
coefficient of friction μ= 0.3
Step two:
The net force Fn= applied force-friction force
Fn=F-F1
F1= limiting force
F1=μ*m*g
F1=0.3*300*9.81
F1=882.9N
the Net force= 1000-882.9
Fn=117.1N
Step three:
we know that
F=ma
Fnet=ma
a= Fnet/m
a=117.1/300
a=0.39m/s^2