<u>Answer:
</u>
Distance traveled = 70 meters
Displacement = 36.06 meters
<u>Explanation:
</u>
Let north be positive Y and east be positive X
10 meters north, displacement = 10 j meters
20 meters west, displacement = -20 i meters
40 meters south, displacement = -40 j meters
Total displacement = (10 j - 20 i – 40 j) meters = (- 20 i - 30 j) meters
Magnitude of displacement =
Distance traveled = 10+20+40 = 70 meters
Answer:
4.24m/s
Explanation:
Potential energy at the top= kinetic energy at the button
But kinetic energy= sum of linear and rotational kinetic energy of the hoop
PE= mgh
KE= 1/2 mv^2
RE= 1/2 I ω^2
Where
m= mass of the hoop
v= linear velocity
g= acceleration due to gravity
h= height
I= moment of inertia
ω= angular velocity of the hoop.
But
I = m r^2 for hoop and ω = v/r
giving
m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2
and m's cancel
g h = v^2
Hence
v= √gh
v= √10×1.8
v= 4.24m/s
Answer:
The grating spacing of the beetle is 
Explanation:
The concept to solve this problem is relate to interference effect given in the Young's Slits. Here was demonstrated that the length of the side labelled \lambda is known as the path difference. The equation is given by,

Where,
= wavelenght of light
N = a positive integer: 1,2,3...
= Angle from the center of the wall to the dark spot
d= width of the slit
Replacing our values we have that for n=1,



Therefore the grating spacing of the beetle is 
Resistance = Voltage / current
Resistance = 66/4
=16.5ohms
Pls mark as brainliest
Answer:
<h2>21.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 7.2 × 3 = 21.6
We have the final answer as
<h3>21.6 N</h3>
Hope this helps you