<span>In an experiment, a researcher can make claims about causation if the independent variable changes because of changes made to the dependent variable. Causation works on cause and effect, so the changed independent variable is the cause and the changed dependent variable is the effect. In an experiment the independent variable is changed to determine the dependent variables value, so the two are directly related.</span>
Answer:
Lenz's law, in electromagnetism, statement that an induced electric current flows in a direction such that the current opposes the change that induced it. This law was deduced in 1834 by the Russian physicist Heinrich Friedrich Emil Lenz (1804–65).
A= v²/R
a = 12²/30 =4.8 m/s²
Answer:
The number density of the gas in container A is twice the number density of the gas in container B.
Explanation:
Here we have
P·V =n·R·T
n = P·V/(RT)
Therefore since V₁ = V₂ and T₁ = T₂
n₁ = P₁V₁/(RT₁)
n₂ = P₂V₂/(RT₂)
P₁ = 4 atm
P₂ = 2 atm
n₁ = 4V₁/(RT₁)
n₂ =2·V₁/(RT₁)
∴ n₁ = 2 × n₂
Therefore, the number of moles in container A is two times that in container B and the number density of the gas in container A is two times the number density in container B.
This can be shown based on the fact that the pressure of the container is due to the collision of the gas molecules on the walls of the container, with a kinetic energy that is dependent on temperature and mass, and since the temperature is constant, then the mass of container B is twice that of A and therefore, the number density of container A is twice that of B.