Explanation:
According to Conservation of Linear Momentum :



Velocity of marble B after collision = 1.33 m/sec
Explanation:
What is the weight of a 2.00-kilogram object on the surface of Earth?
2.00 N
4.91 N
9.81 N
19.6 N
Given parameters:
Mass of the object = 2kg
Unknown:
Weight of the object = ?
Solution:
The weight of an object is the force of gravity acting on the object;
Weight = mass x acceleration due to gravity
Acceleration due to gravity = 9.8m/s²
Now insert the parameters and solve;
Weight = 2 x 9.8 = 19.6N
A person weighing 785 Newtons on the surface of the Earth would weigh 47 Newtons on the surface of Pluto. What is the magnitude of the gravitational acceleration on the surface of Pluto?
1.7 m/s²
0.59 m/s²
0.29 m/s²
9.8 m/s²
Given parameters:
Weight on Earth = 785N
Weight on Pluto = 47N
Unknown:
Acceleration due to gravity on Pluto = ?
Solution
The mass of the body both on Earth and Pluto is the same.
Weight = mass x acceleration due to gravity
Now find the mass on Earth;
Acceleration due to gravity on Earth = 9.8m/s²
785 = mass x 9.8
mass =
= 80.1kg
So;
Acceleration due to gravity on Pluto =
Acceleration due to gravity =
= 0.59m/s²
Weight = (mass) x (acceleration of gravity).
When I calculate the weight of the 81.6 kg, the number I use for gravity
is 9.807 m/s². That gives a weight of 800.25 N, so I think that's where the
question got the crazy number of 81.6 kg ... whoever wrote the problem
wants the hay to weigh 800 N, and that's what I'll use for the weight.
The forces on the bale of hay are gravity: 800N downward, and the
guy on the truck with the pitchfork pulling upward on it with 850 N.
The net force on the bale is (850 - 800) = 50 N upward.
Use Newton's second law of motion: (Net force) = (mass) x (acceleration)
Divide each side by 'mass' :
Acceleration = (net force)/(mass)
On the hay wagon,
Acceleration = (50 N upward) / (81.6 kg) = <em>0.613 m/s² upward</em>
The sound is basically just frequency. Because the sound becomes higher in pitch.
<span>
</span>