Susan should follow PEMDAS,
Parentheses
Exponents
Multiplication
Division
Addition
Subtraction,
So, the first step should be, to solve the equation in the parentheses.
I hope this helps!
Following reaction is involved in above system
HOCl(aq) ↔ H+(aq) + OCl-<span>(aq)
</span>OCl-(aq) + H2O(l) ↔ HOCl(aq) + OH-<span>(aq)
</span>
Now, if the system is obeys 1st order kinetics we have
K = [OCl-][H+<span>]/[HOCl] ............. (1)
</span>∴ [HOCl-] / [OCl-] = [H+] (1 / 3.0 * 10-8<span>) ............. (2)
</span>
and now considering that system is obeying 2nd order kinetics, we have
K = [OH-][HOCl-] / [OCl-] ................. (3<span>)
</span>Subs 2 in 3 we get
K = [OH-][H+] (1 / 3.0 * 10-8<span>)
</span>we know that, [OH-][H+] = 10<span>-14
</span>∴K = 3.3 * 10<span>-7
</span>
Thus, correct answer is e i.e none of these
Based on recommended amount of carbohydrate, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
<h3>How many ounces of endurance formula gatorade g series, endurance formula should a basketball player consume during an hour-long game if it contains 14 grams of carbohydrate per 8 ounces?</h3>
Carbohydrates are food substances metabolized easily by the body to produce energy.
Given that the recommended amount of carbohydrate to consume to maintain performance is 30–60 g/h.
Also 14 grams of carbohydrate found in 8 ounces of the drink.
30 g of carbohydrate will be present in 30 × 8/14 = 17.1 ounces of gatorade g series
60 g of carbohydrate will be present in 60 × 8/14 =34.3 ounces of gatorade g series.
Therefore, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
Learn more about carbohydrates at: brainly.com/question/797978
Explanation:
because translucent shades lets the light through easily (gentle diffusion)