an = a1r^(n-1)
a5 = a1 r^(5-1)
-6 =a1 r^4
a2 = a1 r^(2-1)
-48 = a1 r
divide
-6 =a1 r^4
---------------- yields 1/8 = r^3 take the cube root or each side
-48 = a1 r 1/2 = r
an = a1r^(n-1)
an = a1 (1/2)^ (n-1)
-48 = a1 (1/2) ^1
divide by 1/2
-96 = a1
an = -96 (1/2)^ (n-1)
the sum
Sn = a1[(r^n - 1/(r - 1)]
S18 = -96 [( (1/2) ^17 -1/ (1/2 -1)]
=-96 [ (1/2) ^ 17 -1 /-1/2]
= 192 * [-131071/131072]
approximately -192
Answer:
Step-by-step explanation:
Sin(35) = opposite / hypotenuse
Sin(35) = 4 / hypotenuse Multiply both sides by the hypotenuse
hypotenuse * sin(35) = 4 Divide by Sin(35)
hypotenuse = 4/Sin(35)
Sin(35) = 0.5736
hypotenuse = 4/0.5736
hypotenuse = 6.9737
Rounded answer 6.97
Answer: b ) 65
Step-by-step explanation:
50 + 65 = 115
115-50 = 65
Answer:
the answer would be −
2
+ 1
4
Step-by-step explanation: