Wavelength times frequency = speed of light
7.5E14 x wavelength = 300,000 m/s
Wavelength in meters = 300,000 divided by 7.5E14
Answer:
at the top
Explanation:
Potential energy is the stored energy, mechanical energy,
or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.
(a) 10 GHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
(a). 1 MHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
a. Frequency is the measure of number of times a same thing will be repeated in a given time interval for a given time. And wavelength is the measure of distance between two successive crests or troughs. So wavelength and frequency are inversely proportional to each other. And velocity of light is the proportionality constant.
So frequency of microwave radiation = Speed of light/Wavelength of radiation
Frequency = 
Frequency = 
So 10 GHz is the frequency of microwave radiation.
b). As microwave is a part of light waves, so it will be experiencing the speed of light.
As the speed is 3*
m/s and the distance between the two mountains is given as 50 km, then time can be calculated as
Time = Distance/Velocity
Time = 
So time = 0.167 ms.
Thus, 0.167 ms is required by the microwave to travel between two mountains.
Answer:
1⁺ ion
Explanation:
Metals in the first group on the periodic table will prefer to form 1⁺ ion. This is because the 1 valence electron in their orbital.
Most metals are electropositive and would prefer to lose electrons than to gain it.
Like all metals, the group 1 elements called the alkali metals would prefer to lose and electron.
On losing an electron the number of protons is then greater than the number of electrons. This leaves a net positive charge.
Answer:
it’s transparent to all visible light
step-by-step explanation:
translucent objects allow some light to travel through them