After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Answer:

Upward
Explanation:
We are given that
Mass of scarp paper,
1mg=
Distance,d =8 mm=
Magnitude of electric force =
Where 
Substitute the values


Gravitational force act in downward direction.
The electric force acts in opposite direction and magnitude of electric force is equal to gravitational force.
Hence, the direction of electric force is upward.
Answer:
or 
23.4843749996 m
Yes
Explanation:
E = Electric field = 
c = Speed of light = 
m = Mass of proton= 
q = Charge of electron = 
Acceleration is given by

Dividing by g

The acceleration is
or 

The distance is 23.4843749996 m
The gravitational field is very small compared to the electric field so the effects of gravity can be ignored.