1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
3 years ago
5

Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 280 K with a velocity of 510 m/s. The exit velocity is

120 m/s. For adiabatic operation with no internal irreversibility, determine the exit temperature, in K, and the exit pressure, in bar, for (a) Constant specific heats with k
Physics
1 answer:
Nataly [62]3 years ago
7 0

Answer:

Explanation:

Calculating the exit temperature for K = 1.4

The value of c_p is determined via the expression:

c_p = \frac{KR}{K_1}

where ;

R = universal gas constant = \frac{8.314 \ J}{28.97 \ kg.K}

k = constant = 1.4

c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}

c_p= 1.004 \ kJ/kg.K

The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :

0=(h_1-h_2)+\frac{(v_1^2-v_2^2)}{2}     ------ equation(1)

we can rewrite the above equation as :

0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}

T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}

where:

T_1  = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K

T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}

T_2 = 402.36 \ K

Thus, the exit temperature = 402.36 K

The exit pressure is determined by using the relation:\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}

P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}

P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}

P_2 = 17.79 \ bar

Therefore, the exit pressure is 17.79 bar

You might be interested in
On the graph of voltage versus current, which line represents a 2.0 Ω resistor?​
Vikki [24]

Answer:

<h2>line B</h2>

Explanation:

According to ohm's law V = IR where;

V i sthe supply voltage (in volts)

I = supply current (in amperes)

R = resistance (in ohms)

In order to calculate the line that is equal to 2ohms, we need to calculate the slope of each line using the formula.

For line B, R = ΔV/ΔI

R = V₂-V₁/I₂-I₁

R = 14.0-4.0/7.0-2.0

R = 10.0/5.0

R = 2.0ohms

Since the slope of line B is equal to 2 ohms, this shows that the line B is the one that represents the 2ohms resistor.

3 0
4 years ago
The amplitude of a sound is the A. frequency of the sound. B. magnitude of displacement of a sound pressure wave. C. psychologic
AlladinOne [14]

Answer:

Option B. magnitude of displacement of a sound pressure wave

Explanation:

Amplitude is simply the maximum displacement of a wave from its mean position.

6 0
4 years ago
Read 2 more answers
As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted o
STatiana [176]

Answer:

3335400 N/m² or 483.75889 lb/in²

Explanation:

g = Acceleration due to gravity = 9.81 m/s²

A = Area = 1.5 cm²

m = Mass of woman = 51 kg

F = Force = mg

When we divide force by area we get pressure

P=\frac{F}{A}\\\Rightarrow P=\frac{mg}{A}\\\Rightarrow P=\frac{51\times 9.81}{1.5\times 10^{-4}}\\\Rightarrow P=3335400\ N/m^2

1\ N/m^2=\frac{1}{6894.757}\ lb/in^2

3335400\ N/m^2=3335400\times \frac{1}{6894.757}\ lb/in^2=483.75889\ lb/in^2

The pressure exerted on the floor is 3335400 N/m² or 483.75889 lb/in²

7 0
3 years ago
A shell of mass m and speed v explodes into two identical fragments. If the shell was moving horizontally (the positive x direct
-Dominant- [34]

Answer:

The velocity of the other fragment immediately following the explosion is v .

Explanation:

Given :

Mass of original shell , m .

Velocity of shell , + v .

Now , the particle explodes into two half parts , i.e  \dfrac{m}{2} .

Since , no eternal force is applied in the particle .

Therefore , its momentum will be conserved .

So , Final momentum = Initial momentum

mv=\dfrac{mv}{2}+\dfrac{mu}{2}\\\\u=v

The velocity of the other fragment immediately following the explosion is v .

4 0
3 years ago
Spiders kan swim???????
Nastasia [14]

Answer:

Spiders cannot actually propel their bodies through the water as a swimmer does, but they can use objects to get across the water and some can run across the water.

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • When a non-metal reacts with another atom what happens to its electrons
    13·1 answer
  • E electric- and magnetic-field what is the direction of propagation of the wave?
    14·1 answer
  • A shark is swimming at 10 m/s west when it spots some floating bait caught in some seaweed straight ahead. After 10 s, and trave
    9·2 answers
  • Call 7744882898 ::::::
    9·1 answer
  • An object with mass m moving in a circle of radius r with speed v has linear momentum of magnitude mv and an angular momentum of
    9·1 answer
  • A golf club exerts and average force of 1000N on a 0.045-kg golf ball which is initially at rest. The club is in contact with th
    15·1 answer
  • How many atoms are in a molecule of C6H12O6?
    10·1 answer
  • Look at photo D. Explain how the fountains help to keep the gardens cool. ​
    13·1 answer
  • A space expedition discovers a planetary system consisting of a massive star and several spherical planets. The planets all have
    15·1 answer
  • Now explore friction force. Set the piece of plastic or wood on the table and push it steadily across the tabletop using your fi
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!