Answer:
v_squid = - 2,286 m / s
Explanation:
This exercise can be solved using conservation of the moment, the system is made up of the squid plus the water inside, therefore the force to expel the water is an internal force and the moment is conserved.
Initial moment. Before expelling the water
p₀ = 0
the squid is at rest
Final moment. After expelling the water
= M V_squid + m v_water
p₀ = p_{f}
0 = M V_squid + m v_water
c_squid = -m v_water / M
The mass of the squid without water is
M = 9 -2 = 7 kg
let's calculate
v_squid = 2 8/7
v_squid = - 2,286 m / s
The negative sign indicates that the squid is moving in the opposite direction of the water
When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted light, and all the light is reflected. The value of this angle is given by

where n2 and n1 are the refractive indices of the second and first medium, respectively.
In the first part of the problem, light moves from glass to air (

) and the critical angle is

. This means that we can find the refractive index of glass by re-arranging the previous formula:

Now the glass is put into water, whose refractive index is

. If light moves from glass to water, the new critical angle will be
It causes the global pattern of wind and precipitation (such as rain, snow, or hail).
6.3 That Would be the I answer I think but Check on Google For the formula
Answer:
= 591.45 T/s
Explanation:
i = induced current in the loop = 0.367 A
R = Resistance of the loop = 117 Ω
E = Induced voltage
Induced voltage is given as
E = i R
E = (0.367) (117)
E = 42.939 volts
= rate of change of magnetic field
A = area of loop = 7.26 x 10⁻² m²
Induced emf is given as


= 591.45 T/s