The heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises and the cooler air from the sea moves in to replace the risen air. The correct answer is option A
There will be heat transfer from a region of higher temperature to the region of lower temperature. But in the case of land and sea breeze, the transfer of heat are the result of convectional current in nature. Because the land is a better absorber of heat and also has a lower specific heat capacity compare to sea, during the day, the heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises.
The cooler air from the sea moves in to replace the risen air.
Why do ocean winds or sea breezes blow toward shore during the day ? It is because air over the beach heats up, rises and is replaced by ocean air.
Therefore, option A is correct
Learn more here : brainly.com/question/1114842
Answer:
1. a) 72 N.
2. a) 2 m/s².
Explanation:
Given the following data;
1. Mass = 90kg
Acceleration = 0.8 m/s²
To find the force;
Force = mass * acceleration
Force = 90 * 0.8
Force = 72 Newton.
2. Mass = 50kg
Force = 100N
To find the magnitude of acceleration;
Acceleration = force/mass
Acceleration = 100/50
Acceleration = 2 m/s²
All objects in orbit must follow the path of an ellipse (one of Keplers laws)
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
Answer:
N₂=20.05 rpm
Explanation:
Given that
R= 19 cm
I=0.13 kg.m²
N₁ = 24.2 rpm

ω₁= 2.5 rad/s
m= 173 g = 0.173 kg
v=1.2 m
Initial angular momentum L₁
L₁ = Iω₁ - m v r ( negative sign because bird coming opposite to motion of the wire motion)
Final linear momentum L₂
L₂= I₂ ω₂
I₂ = I + m r²
The is no any external torque that is why angular momentum will be conserve
L₁ = L₂
Iω₁ - m v r = I₂ ω₂
Iω₁ - m v r = ( I + m r²) ω₂
Now by putting the all values
Iω₁ - m v r = ( I + m r²) ω₂
0.13 x 2.5 - 0.173 x 1.2 x 0.19 = ( 0.13 + 0.173 x 0.19²) ω₂
0.325 - 0.0394 = 0.136 ω₂
ω₂ = 2.1 rad/s

N₂=20.05 rpm