1) Frequency: 
the energy of the photon absorbed must be equal to the ionization enegy of the atom, which is

The energy of a photon is given by

where
is the Planck's constant. By using the energy written above and by re-arranging thsi formula, we can calculate the frequency of the photon:

2) Wavelength: 91.2 nm
The wavelength of the photon can be found from its frequency, by using the following relationship:

where
is the speed of light and f is the frequency. Substituting the frequency, we find

Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
Answer:
It is used in MRI because it does not damage cells
Radio waves are used for space research because they have very long wavelengths
Explanation:
Many parts of the electromagnetic spectrum are applied in clinical diagnosis and treatment of illnesses. However, these highly ionizing radiation damage cells and its dosage must be carefully managed to avoid creating radiation related health problems for the patients.
Radio waves can be used in MRI without issues because the energy of the radiation is not sufficient to cause damage to cells but is sufficient to provide images for the sake of medical diagnosis.
Secondly, radio waves have long wavelength. This property is suitable for long range
communication. Hence it can be used in space research
Answer:
A gamma ray, light from a lamp, and a microwave are examples of electromagnetic radiation.
Explanation:
Gamma radiation, visible light (light from a lamp), and microwaves are all apart of the electromagnetic spectrum.