<span>Energy is calculated by molecule dividing energy by mole by Avogadro's number (6.022*10^23)
941kJ=9.41*10^5 J
so energy by molecule
E= 9.41*10^5/6.022*10^23=1.563*10^-18 J
Wavelength (w) given by E=hc/w
where, E = energy
h = planks constant (6.6262 x 10-34 J·s)
c = speed of light (3 x 10^8 m/s )
So,
w= hc/E
= (6.6262*10^-34)*(3*10^8) /1.563*10^-18
= 127.2 Nm
Longest wavelength of radiation =127.2 Nm</span>
Answer:
1341.03 V/m
Explanation:
The power output per unit area is the intensity and also the is the magnitude of the Poynting vector.
= cε₀
⇒ = cε₀
Where;
P is the power output
A is the area of the beam
c is speed of light
ε₀ is permittivity of free space 8.85 × 10⁻¹² F/m
is the average (rms) value of electric field
Making electricfield the subject of the equation
= P / Acε₀
= √(P / Acε₀)
But area A = πr²
= √(P / πr²cε₀)
Given:
Output power, P = 15 mW = 0. 015 W
Diameter, d = 2 mm = 0.002 m
⇒ Radius,
Solving for average (rms) value of electric field;
= 1341.03 V/m
Answer:
The mass's acceleration is 5 m/s^2 in the minus X direction and 9,8 m/s^2 in the minus Y direction.
Explanation:
By applying the second Newton's law in the X and Y direction we found that in the minus X direction an external force of 10 N is exerted, while in the minus Y direction the gravity acceleration is acting:
X-direction balance force:
Y-direction balance force:
Where ax and ay are the components of the respective acceleration and m is the mass. By solving for each acceleration:
Note that for the second equation above the mass is cancelled and, the Y direction acceleration is minus the gravity acceleration:
For the x component aceleration we must replace the Newton unit:
A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.