When `CO_(2)` is bubbled through a cold pasty solution of barium peroxide in water, `H_(2)O_(2)` is obtained. <br> `BaO+CO_(2)+H_(2)OtoBaCO_(3)+H_(2)O_(2)` Barium carbonate being insoluble is filtered off. This is known as Merck's process.
<h3>What is meant by Perhydrol?</h3>
perhydrol (countable and uncountable, plural perhydrols) A stabilised solution of hydrogen peroxide.
<h3>What is Merck's Perhydrol?</h3>
Uses: Perhydrol is used as an antiseptic for wounds, and also acts as a germicide to kill bacteria and germs.
Being a strong oxidizing agent it has bleaching properties and acts as a ripening agent.
Learn more about merck's process here:
<h3>
brainly.com/question/16856280</h3><h3 /><h3>#SPJ4</h3>
Answer:
Option no 3
Explanation:
Metallic elements aren't usually crumbled in normal air pressure and conditions.
Clorine gas was formed at the <em><u>positive</u></em><em><u> </u></em><em><u>electrode</u></em><em><u>.</u></em><em><u> </u></em>
Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
There are 66 neutrons in a single atom of indium-115. The atomic number of indium-115 is 49, meaning there are 49 protons. Then the atomic mass is 115, so 115-49 = 66.