Explanation:
There are several ways to define acids and bases, but pH and pOH refer to hydrogen ion concentration and hydroxide ion concentration, respectively. The "p" in pH and pOH stands for "negative logarithm of" and is used to make it easier to work with extremely large or small values. pH and pOH are only meaningful when applied to aqueous (water-based) solutions. When water dissociates it yields a hydrogen ion and a hydroxide.
Answer:
Its a 50% chance of it happeing
Explanation:
Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left
Ideal gases are hypothetical gases whose molecules occupy negligible space and have no interactions, and that consequently obeys the gas laws exactly.
Not exactly sure about the amount...
I hope this helps! :)
The answer is: Dividing the number of molecules in the sample by Avogadro's number.
The Avogadro’s number is the number of atoms in 12 grams of the isotope carbon-12 (¹²C).
Na is Avogadro number or Avogadro constant (the number of particles, in this example carbon, that are contained in the amount of substance given by one mole).
The Avogadro number has value 6.022·10²³ 1/mol in the International System of Units; Na = 6.022·10²³ 1/mol.
For example:
N(Ba) = 2.62·10²³; number of atoms of barium.
n(Ba) = N(Ba) ÷ Na.
n(Ba) = 1.3·10²⁴ ÷ 6.022·10²³ 1/mol.
n(Ba) = 2.158 mol; amount of substance of barium.