Answer:
1 gram of H2 will be produced from 12 grams of Mg.
Explanation:
According to Stoichiometry, 0.5 moles of Mg are present. 1 mole of Mg produces 1 mole of H2, so 0.5 moles of Mg will produce 0.5 moles of H2. Multiplying molar mass of H2 i.e. 2 gram/mole with 0.5 moles, we can find the mass of H2 in grams which is 1 gram.
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
Measuring its density and comparing your result to a list of known densities, or other properties that give you useful info
Explanation:
You can use observations about substances to form a hypothesis about the substance by comparing it to others. Ex: if something is magnetic it must be made of one or more of the elements iron, cobalt, or nickel.
Answer:
all good. tell me about your day
First, we need to calculate moles of hydrazoic acid NH3:
moles NH3 = molarity * volume
= 0.15 m * 0.025 L
= 0.00375 moles
moles NaOH = molarity * volume
= 0.15 m * 0.015 L
= 0.00225 moles
after that we shoul get the total volume = 0.025L + 0.015L
= 0.04 L
So we can get the concentration of NH3 & NaOH by:
∴[NH3] = moles NH3 / total volume
= 0.00375 moles / 0.04 L
= 0.09375 M
∴[NaOH] = moles NaOH / total volume
= 0.00225 moles / 0.04 L
= 0.05625 M
then, when we have the value of Ka of NH3 so we can get the Pka value from:
Pka = -㏒Ka
= - ㏒ 1.9 x10^-5
= 4.7
finally, by using H-H equation we can get PH:
PH = Pka + ㏒[salt/ basic]
PH = 4.7 +㏒[0.05625/0.09375]
∴ PH = 4.48