Answer:
![[SO_2Cl_2]_{600}= 0.0842 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D_%7B600%7D%3D%200.0842%20M)
Explanation:
Some theoretical knowledge is required here. We should understand that whenever we plot the natural logarithm, ln, of a concentration vs. time and obtain a straight line, this indicates a first-order reaction. That said, since this is the case here, we have a first-order reaction with respect to
.
The linear equation has the following terms:

It is a linear form of the integrated first-order law equation:
![ln[SO_2Cl_2]_t = -kt + ln[SO_2Cl_2]_o](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_t%20%3D%20-kt%20%2B%20ln%5BSO_2Cl_2%5D_o)
Therefore, the rate constant, k, is:

The natural logarithm of initial molarity is:
![ln[SO_2Cl_2]_o = -2.30](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_o%20%3D%20-2.30)
Using the equation, we may substitute for t = 600 s and obtain the natural logarithm of the concentration at that time:
![ln[SO_2Cl_2]_{600} = -0.000290 s^{-1}\cdot 600 s - 2.30 = -2.474](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_%7B600%7D%20%3D%20-0.000290%20s%5E%7B-1%7D%5Ccdot%20600%20s%20-%202.30%20%3D%20-2.474)
Take the antilog of both sides to find the actual molarity:
![[SO_2Cl_2]_{600}=e^{-2.474} = 0.0842 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D_%7B600%7D%3De%5E%7B-2.474%7D%20%3D%200.0842%20M)
Answer:
Option 3 is correct.
The atomic nucleus of each element has a unique number of protons. Therefore, the energy of the electron layers of the atoms of each element is unique.
If we have the energy released from each electron transfer between the layers of the atom, we can identify the element.
It is the polar nature of water that allows ionic compounds to dissolve in it. In the case of sodium chloride (NaCl) for example, the positive sodium ions (Na+) are attracted to the negative pole of the water molecule, while the negative chloride ions (Cl−) are attracted to the positive pole of the water molecule.