1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
10

Suppose that a high school marching band has 86 members. Of these 86 band members, 26 are seniors, 17 play the trumpet, and 4 ar

e seniors who play the trumpet. What is the probability that a randomly selected band member is a senior given that he or she plays the trumpet
Mathematics
1 answer:
GalinKa [24]3 years ago
8 0

Answer: 0.3023

Step-by-step explanation:

86 band members

26 are senior, 17 plays trumpet. If 4 are seniors and play trumpet, we solve this using the bayes theorem of conditional probability.

Probability of choosing band member that plays trumpet =17/86 = 2/43.

Probability of choosing a senior that plays trumpet = 4/26

Probability that a chosen member is a senior given that he plays trumpet = (2/43)/(4/26)

= 0.3023.

You might be interested in
Find s(2t - 4) for s(t) = 3t - 7 <br> A)6t - 19 B) 6t - 18 C) 5t - 11 D) 5t - 19
asambeis [7]
Hello,

Answer A

s(x)=3x-7
s(2t-4)=3*(2t-4)-7=6t-12-7=6t-19
3 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
If the 102,619 residents of a city are divided into 57 equal groups, then some residents don't fit into a group.
valentinak56 [21]

Answer:

1,800, 19

Step-by-step explanation:

102,619÷57=1800 (nearest one)

102,619-1800×57=19

3 0
2 years ago
How do you find perimeter
Veronika [31]
All you do is add up all your sides! So if your shape has 4+4+5+5 = 18. All you do is add them up! 
3 0
2 years ago
Let X1, X2 and X3 be three independent random variables that are uniformly distributed between 50 and 100.
sergejj [24]

Answer:

a) the probability that the minimum of the three is between 75 and 90 is 0.00072

b) the probability that the second smallest of the three is between 75 and 90 is 0.396

Step-by-step explanation:

Given that;

fx(x) = { 1/5 ; 50 < x < 100

              0, otherwise}

Fx(x) = { x-50 / 50 ; 50 < x < 100

                          1 ;   x > 100

a)

n = 3

F(1) (x) = nf(x) ( 1-F(x)^n-1

= 3 × 1/50 ( 1 - ((x-50)/50)²

= 3/50 (( 100 - x)/50)²

=3/50³ ( 100 - x)²

Therefore P ( 75 < (x) < 90) =  ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx

= 3/50³ [ -2 (100 - x ]₇₅⁹⁰

= (3 ( -20 + 50)) / 50₃

= 9 / 12500 = 0.00072

b)

f(k) (x) = nf(x)  ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k

Now for n = 3, k = 2

f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))

= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)

= 6/50³ ( 150x - x² - 5000 )

therefore

P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx

= 99 / 250 = 0.396

3 0
2 years ago
Other questions:
  • What - 31 equals to 213
    7·1 answer
  • Find the prime factorazation of 31
    6·2 answers
  • HELP ME PLZZ I NEED HELP WITH THIS!!
    11·2 answers
  • Write an equation to represent the following: Three consecutive integers add up to 11 more than the smallest.
    12·1 answer
  • Brainliest if answered correctly! Please help
    5·1 answer
  • Use this diagram and information given to find m_DFC.
    11·1 answer
  • What is forty five plus ninety ​
    12·1 answer
  • Determine which statement completes each open sentence:
    7·1 answer
  • The line graph on the y-axis is parallel to the x-axis, 3rd quadrant point, and an open downward parabola.
    5·1 answer
  • ZA and B are supplementary angles. If mA (x - 9)° and
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!