Answer:
Maximum height, h = 10 m
Explanation:
It is given that,
Mass of golf ball, m = 45 g = 0.045 kg
The ball comes down on a tree root and bounces straight up with an initial speed of 14.0 m/s.
We need to find the height the ball will rise after the bounce. It is based on the conservation of energy such that,

h is maximum height raised by the ball

So, the ball will raised to a height of 10 meters.
Explanation:
(a) Since, it is given that the blocks are identical so distribution of charge will be uniform on both the blocks.
Hence, final charge on block A will be calculated as follows.
Charge on block A =
= 4.35 nC
Therefore, final charge on the block A is 4.35 nC.
(b) As it is given that the positive charge is coming on block A
. This means that movement of electrons will be from A to B.
Thus, we can conclude that while the blocks were in contact with each other then electrons will flow from A to B.
The force on each balloon is 2×10^−3 N.
Consider two balloons of diameter 0.200m each with a mass of 1.00g hanging apart with 0.0500m separation on the ends of string making angles of 10.0° with the vertical.

So,

A force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N).
Learn more about force here:
brainly.com/question/13191643
#SPJ4
Answer:
If the starting GPE is doubled than it's KE would also double.
Answer:
Part a)
Moment of inertia of the cylinder is given as

Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 
Explanation:
As we know that the inclined plane is of length L = 3 m
and its inclination is given as 25 degree
so we know that acceleration of center of mass of the cylinder is constant so we will have

so we have

now we know that



Now we have know that final speed of the cylinder due to pure rolling is given as



Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 