Answer:
![1.72222\ radians](https://tex.z-dn.net/?f=1.72222%5C%20radians)
Step-by-step explanation:
Given radius
and arc length
.
![arc\ length=radius\times central\ angle(radians)\\Central\ angle(radians)=\frac{arc\ length}{radius} \\](https://tex.z-dn.net/?f=arc%5C%20length%3Dradius%5Ctimes%20central%5C%20angle%28radians%29%5C%5CCentral%5C%20angle%28radians%29%3D%5Cfrac%7Barc%5C%20length%7D%7Bradius%7D%20%5C%5C)
![central\ angle=\frac{15.5}{9}=1.72222\ radians](https://tex.z-dn.net/?f=central%5C%20angle%3D%5Cfrac%7B15.5%7D%7B9%7D%3D1.72222%5C%20radians)
![\qquad \qquad\huge \underline{\boxed{\sf Answer}}](https://tex.z-dn.net/?f=%5Cqquad%20%5Cqquad%5Chuge%20%5Cunderline%7B%5Cboxed%7B%5Csf%20Answer%7D%7D)
Here's the solution ~
Let's find the measure of hypotenuse first, by using Pythagoras theorem ;
![\qquad \sf \dashrightarrow \: h {}^{2} = {8}^{2} + {6}^{2}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20h%20%7B%7D%5E%7B2%7D%20%20%3D%20%20%7B8%7D%5E%7B2%7D%20%20%2B%20%20%7B6%7D%5E%7B2%7D%20)
![\qquad \sf \dashrightarrow \: h {}^{2} = {36}^{} + {64}^{}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20h%20%7B%7D%5E%7B2%7D%20%20%3D%20%20%7B36%7D%5E%7B%7D%20%20%2B%20%20%7B64%7D%5E%7B%7D%20)
![\qquad \sf \dashrightarrow \: h {}^{2} = 100](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20h%20%7B%7D%5E%7B2%7D%20%20%3D%20100)
![\qquad \sf \dashrightarrow \: h {}^{} = \sqrt{100}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20h%20%7B%7D%5E%7B%7D%20%20%3D%20%20%5Csqrt%7B100%7D%20)
![\qquad \sf \dashrightarrow \: h {}^{} = {10}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20h%20%7B%7D%5E%7B%7D%20%20%3D%20%20%7B10%7D%20)
Now, let's find the asked values ~
![\qquad \sf \dashrightarrow \: \sin(x) = \dfrac{opposite \: side}{hypotenuse}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Csin%28x%29%20%3D%20%20%5Cdfrac%7Bopposite%20%5C%3A%20side%7D%7Bhypotenuse%7D%20%20)
![\qquad \sf \dashrightarrow \: \sin(x) = \dfrac{6}{10}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Csin%28x%29%20%3D%20%20%5Cdfrac%7B6%7D%7B10%7D%20%20)
![\qquad \sf \dashrightarrow \: \sin(x) = \dfrac{3}{5} \: or \: 0.6 \: units](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Csin%28x%29%20%3D%20%20%5Cdfrac%7B3%7D%7B5%7D%20%20%20%5C%3A%20or%20%5C%3A%200.6%20%5C%3A%20units)
For Cos y :
![\qquad \sf \dashrightarrow \: \cos(y) = \dfrac{adjcant \: side}{hypotenuse}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Ccos%28y%29%20%3D%20%20%5Cdfrac%7Badjcant%20%5C%3A%20side%7D%7Bhypotenuse%7D%20%20)
![\qquad \sf \dashrightarrow \: \cos(y) = \dfrac{6}{10}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Ccos%28y%29%20%20%20%3D%20%5Cdfrac%7B6%7D%7B10%7D%20)
![\qquad \sf \dashrightarrow \: \cos(y) = \dfrac{3}{5} \: or \: 0.6 \: units](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%20%5Ccos%28y%29%20%20%20%3D%20%5Cdfrac%7B3%7D%7B5%7D%20%20%5C%3A%20or%20%5C%3A%200.6%20%5C%3A%20units)
As we can see that both sin x and Cos y have equal values, therefore The required relationships is equality.
I.e Sin x = Cos y
Hope it helps ~
Answer: x=1
Step-by-step explanation: 6x+24=30
6x=6
x=1
Answer:
Step-by-step explanation:
a.
£100
1:3
1+3=4
1/4×£100
=£25
3/4×£100
=£75
b.
£80
3:5
3+5=8
3/8×£80
=£30
5/8×£80
=£50
C.
£250
2:3:5
2+3+5=10
2/10×£250
=£50
3/10×£250
=£75
5/10×£250
=£125
Answer:
It would be 7701
Step-by-step explanation: hope this helps!