Answer:
b) It produces electrical current spontaneously.
Explanation:
Cells capable of converting chemical energy to electrical energy and vice versa are termed Electrochemical cells. There are two types of electrochemical cells viz: Galvanic or Voltaic cells and Electrolytic cells. Voltaic cell is an elctrochemical cell capable of generating electrical energy from the chemical reaction occuring in it.
The voltaic cell uses spontaneous reduction-oxidation (redox) reactions to generate ions in a half cell that causes electric currents to flow. An half cell is a part of the galvanic cell where either oxidation or reduction reaction is taking place. Hence, the spontaneous production of electric currents is true about Voltaic/Galvanic cells.
Maybe her old shoes had soft worn out bottoms and she slips in them. So her new shoes had more grip than her old ones so they kept her from falling.
Answer:
PH= 6.767 (answer is the A option)
Explanation:
first we need to correct the value in Kw at this temperature is 2.92*10^-14
so, in this case we have that:
Kw=2.92*10^-14 M²
[ H3O^+] [ H3O^+]
![[H_{3}O^{+} ] [OH^{-} ] = Kw = 2.92*10^{-14} M^{2} \\\\](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D%20%5BOH%5E%7B-%7D%20%20%5D%20%3D%20Kw%20%3D%202.92%2A10%5E%7B-14%7D%20M%5E%7B2%7D%20%20%20%5C%5C%5C%5C)
at 40ºC
![[H_{3}O^{+} ] = [OH^{-} ]](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D%20%3D%20%5BOH%5E%7B-%7D%20%20%5D)
![[H_{3}O^{+} ]^{2} = 2.92*10^{-14} M^{2}](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D%5E%7B2%7D%20%3D%202.92%2A10%5E%7B-14%7D%20M%5E%7B2%7D)
![[H_{3}O^{+} ] = (2.92*10^{-14})^{1/2} = 1.71*10^{-7} M](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D%20%3D%20%282.92%2A10%5E%7B-14%7D%29%5E%7B1%2F2%7D%20%3D%201.71%2A10%5E%7B-7%7D%20M)
![PH= -log10[H_{3}O^{+} ] = -log10(1.71*10^{-7} ) = 6.767](https://tex.z-dn.net/?f=PH%3D%20-log10%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D%20%3D%20-log10%281.71%2A10%5E%7B-7%7D%20%29%20%3D%206.767)
Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!