From the right hand side, we will need to find a way to rewriting 3x²y in terms of cube roots.
We know that 27 is 3³, so if we were to rewrite it in terms of cube roots, we will need to multiply everything by itself two more twice. (ie we can rewrite it as ∛(3x²y)³)
Hence, we can say that it's:
![\sqrt[3]{162x^{c}y^{5}} = \sqrt[3]{(3x^{2}y)^{3}} * \sqrt[3]{6y^{d}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5E%7Bc%7Dy%5E%7B5%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%283x%5E%7B2%7Dy%29%5E%7B3%7D%7D%20%2A%20%5Csqrt%5B3%5D%7B6y%5E%7Bd%7D%7D)
![= \sqrt[3]{162x^{6}y^{3+d}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B162x%5E%7B6%7Dy%5E%7B3%2Bd%7D%7D)
Hence, c = 6 and d = 2
Answer:
x = -2
Step-by-step explanation:
Pull out like factors :
-3x - 6 = -3 • (x + 2)
Solve : -3 = 0
This equation has no solution.
A a non-zero constant never equals zero.
Solve : x+2 = 0
Subtract 2 from both sides of the equation :
x = -2
Answer:
x = 8
Step-by-step explanation:
Given f(x) = 4
The required value of x is from the domain.
The given value of 4 is from the range.
From the diagram
8 → 4
Thus f(x) = 4 when x = 8
Answer:
Step-by-step explanation:
You have no grounds for making a statement like that. There are a variety of reasons why you might not get immediate answers. Be patient.
I will do the second part of this question (finding the first three numbers):
a(4) = a(3)*(-3) + 2 = -148, so a(3)*(-3) = -150 and a(3) = -50
a(3) = 50
a(2) = a(3)*(-3) + 2 = 50, so -3*a(3) = 48 and a(d) = -16
a(1) = a(2)*(-3) + 2 = -16, so a(2)*(-3) = -18 and a(1) = 6
The procedure for finding a(5), a(6) and a(7) is exactly the same.
A. You can factor it to those terms