solution given:
For Cuboid
length[l]=11mm
breadth [b]=9mm
height[h]=6mm
For semi cylinder
height[H]=11mm
radius[r]=
Now
Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]
:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9
:438+219.2-99
:558.2mm²
Here area of base is subtracted as it is not included.
<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>
I am not sure what the question is asking I am sorry could you please be more specific ?
Answer:
2.2 × 10³ mm³
Step-by-step explanation:
We have a triangular prism with the following dimensions:
Altitude: 20.5 millimeters
Base: 16 millimeters
Height: 13.3 millimeters
We can calculate the volume of a triangular prism using the following expression.
V = (1/2 × Altitude × Base) × Height
where,
(1/2 × Altitude × Base) is the area of the base
V = (1/2 × Altitude × Base) × Height
V = (1/2 × 20.5 mm × 16 mm) × 13.3 mm = 2.2 × 10³ mm³
Answer:
4 days is the correct answer
Step-by-step explanation:
Answer:
b 64
Step-by-step explanation:
because p is just a mirror of o ,and o =64