To solve this problem it is necessary to apply the concepts related to the Force from Hook's law as well as the definition of the period provided by the same definition.
We know that the Force can be defined as

Where
k = Spring constant
x = Displacement
g = Gravity
m = mass
At the same time the period of a spring mass system is defined as

Where
m = Mass
k = Spring constant
Our values are given as,
m = 0.404kg
x = 0.666m
Replacing to find the value of the Spring constant we have that



Now using the formula of the period we know that



Finally, if the oscillation was 0.359m
The maximum height will be determined by the total length of that oscillation being equivalent to



Answer:
<h3>The answer is 106.5 g</h3>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume = 15 mL
density = 7.1 g/mL
We have
mass = 7.1 × 15
We have the final answer as
<h3>106.5 g</h3>
Hope this helps you
They are called radicals.................
Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m
D. Speed
"Jorge's Average SPEED is 8km/hr"
hope I helped! also when doing multiple choice try using process of elimination. helps alot :P