Answer:
Energy cannot be changed from one form to another without a loss of usable energy
Explanation:
Second law of thermodynamics states that the total entropy or the randomness of the system remains constant over time. It also states that the net entropy will remain the same or it will increase.
Entropy of a system is given by heat absorbed divided by temperature. It is given by :

So, the correct option is (A) "Energy cannot be changed from one form to another without a loss of usable energy".
Scale: (soft 1-->6 hardest)
<span>1=Talc 2=Gypsum 3=Calcite 4=Fluorite 5=Apatite 6=Orthoclase
</span>Mineral #1 can only scratch two other minerals therefore it must have a hardness level of 2+1=3 which is Calcite. (scratches talc, gypsum)
Mineral #2 can scratch four other minerals therefore it must have a hardness level of 4+1=5 which is Apatite. (scratches all but Apatite, Orthoclase)
Looking through the possible conclusions.. It looks like answer is D.
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

Sunday, July 20, marked 45 years since the United States put the first two astronauts safely on the moon. The cost for the Mercury, Gemini and Apollo programs was more than $25 billion at the time more like $110 billion in today’s world. The ensuing U.S. space efforts have cost an additional $196 billion for the shuttle and $50 billion for the space station. NASA’s total inflation-adjusted costs have been more than $900 billion since its creation in 1958 through 2014 (more than $16 billion per year). Looking back, have we gotten our money’s worth from the investment?
IamSugarBee
Answer:
hope this helps i think the answer is C