1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
6

A car accelerates in the +x direction from rest with a constant acceleration of a1 = 1.76 m/s2 for t1 = 20 s. At that point the

driver notices a tree limb that has fallen on the road and brakes hard for t2 = 5 s until it comes to a stop.
Part (a) Write an expression for the car's speed just before the driver begins braking, v1.
Part (b) If the limb is on the road at a distance of 550 meters from where the car began its initial acceleration, will the car hit the limb?
Part (c) How far, in meters, from the original location of the limb will the car be when it stops?
Physics
1 answer:
alex41 [277]3 years ago
8 0

Answer:

(a)v_1 = a_1t_1 = 1.76 t_1

(b) It won't hit

(c) 110 m

Explanation:

(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

v_1 = v_0 + a_1t_1 = 0 +1.76t_1 = 1.76t_1

(b) The velocity of the car before the driver begins braking is

v_1 = 1.76*20 = 35.2m/s

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

a_2 = \frac{\Delta v_2}{\Delta t_2} = \frac{v_2 - v_1}{t_2} = \frac{0 - 35.2}{5} = -7.04 m/s^2

We can use the following equation of motion to calculate how far the car has travel since braking to stop

s_2 = v_1t_2 + a_2t_2^2/2

s_2 = 35.2*5 - 7.04*5^2/2 = 88 m

Also the distance from start to where the driver starts braking is

s_1 = a_1t_1^2/2 = 1.76*20^2/2 = 352

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb

(c) The distance from the limb to where the car stops is 550 - 440 = 110 m

You might be interested in
Radiation is energy that is (5 points) not transferred at all transferred by direct contact of two objects transferred by moving
BARSIC [14]
There isn't a question here so, true
3 0
3 years ago
Consider a particle moving along the x-axis where x(t) is the position of the particle at time t, x' (t) is its velocity, and x'
nignag [31]

The position of the particle is given by:

x(t) = t³ - 12t² + 21t - 9

Differentiate x(t) with respect to t to find the velocity x'(t):

x'(t) = 3t² - 24t + 21

Differentiate x'(t) with respect to t to find the acceleration x''(t):

x''(t) = 6t - 24

5 0
2 years ago
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 21
Inga [223]

Answer:

12353 V m⁻¹ = 12.4 kV m⁻¹

Explanation:  

Electric field between the plates of the parallel plate capacitor depends on the potential difference across the plates and their distance of separation.Potential difference across the plates V over the distance between the plates gives the electric field between the plates. Potential difference is the amount of work done per unit charge and is given here as 21 V. Electric field is the voltage over distance.

E = V ÷ d = 21 ÷ 0.0017 = 12353 V m⁻¹

8 0
2 years ago
In a carrom game, a striker weighs three times the mass of the other pieces, the carrom men and the queen, which each have a mas
Mila [183]

Answer:

- The final velocity of the queen is (3/2) of the initial velocity of the striker. That is, (3V/2)

- The final velocity of the striker is (1/2) of the initial velocity of the striker. That is, (V/2)

Hence, the relative velocity of the queen with respect to the striker after collision

= (3V/2) - (V/2)

= V m/s.

Explanation:

This is a conservation of Momentum problem.

Momentum before collision = Momentum after collision.

The mass of the striker = M

Initial Velocity of the striker = V (+x-axis)

Let the final velocity of the striker be u

Mass of the queen = (M/3)

Initial velocity of the queen = 0 (since the queen was initially at rest)

Final velocity of the queen be v

Collision is elastic, So, momentum and kinetic energy are conserved.

Momentum before collision = (M)(V) + 0 = (MV) kgm/s

Momentum after collision = (M)(u) + (M/3)(v) = Mu + (Mv/3)

Momentum before collision = Momentum after collision.

MV = Mu + (Mv/3)

V = u + (v/3)

u = V - (v/3) (eqn 1)

Kinetic energy balance

Kinetic energy before collision = (1/2)(M)(V²) = (MV²/2)

Kinetic energy after collision = (1/2)(M)(u²) + (1/2)(M/3)(v²) = (Mu²/2) + (Mv²/6)

Kinetic energy before collision = Kinetic energy after collision

(MV²/2) = (Mu²/2) + (Mv²/6)

V² = u² + (v²/3) (eqn 2)

Recall eqn 1, u = V - (v/3); eqn 2 becomes

V² = [V - (v/3)]² + (v²/3)

V² = V² - (2Vv/3) + (v²/9) + (v²/3)

(4v²/9) = (2Vv/3)

v² = (2Vv/3) × (9/4)

v² = (3Vv/2)

v = (3V/2)

Hence, the final velocity of the queen is (3/2) of the initial velocity of the striker and is in the same direction.

The final velocity of the striker after collision

= u = V - (v/3) = V - (V/2) = (V/2)

The relative velocity of the queen withrespect to the striker after collision

= (velocity of queen after collision) - (velocity of striker after collision)

= v - u

= (3V/2) - (V/2) = V m/s.

Hope this Helps!!!!

3 0
3 years ago
Read 2 more answers
How to convert to si and english using fraction style(picture is example)? 10 m/s to mph
emmasim [6.3K]
Hope this shows! It has all the equations for all of the problems u asked in the comments 

5 0
3 years ago
Other questions:
  • Calculate the mass of gold that occupies 5.0 × 10−3 cm3 . the density of gold is 19.3 g/cm3
    11·1 answer
  • Jackson bought a Miata for his 16th birthday and is planning a road trip through Canada. The speedometer in the Miata only reads
    7·1 answer
  • A sound wave in a steel rail has a frequency of 620 hz and a wavelength of 10.5m. What is the speed of sound in steel?
    8·1 answer
  • A bicyclist on an old bike (combined mass: 92 kg) is rolling down (no pedaling or braking) a hill of height 120 m. Over the cour
    6·2 answers
  • If you are looking for an insulator you are looking for a material that will
    8·1 answer
  • A ranger in a national park is driving at 11.8mi / h when a deer jumps into the road 242 ft ahead of the vehicle. After a reacti
    5·1 answer
  • There is a current of 0.99 a through a light bulb when its connected to a 9.7 v battery what is the resistance of the light bulb
    9·1 answer
  • A car moving south speeds up from 10 m/s to 40 m/s in 15 seconds. What is the car's acceleration?
    7·1 answer
  • the eccentricity of the Moon's orbit is low, medium, or high with respect to most of the planets' orbits around the sun?
    8·1 answer
  • A sample is brought to the laboratory and it is determined that one-eighth of the original
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!