The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
Explanation:
Acceleration is the change in speed over a given time period
Answer:
The motion of the lighter child would look faster than that of the heavier child, but both have the same period of oscillation.
Explanation:
Oscillation is a type of simple harmonic motion which involves the to and fro movement of an object. The oscillation takes place at a required time called the period of oscillation.
Since the swings are similar, the period of oscillation of the two children are the same and they would complete one oscillation in the same time. Though the oscillation of the lighter child seems faster than that of the heavy child, their masses does not affect the period of oscillation.
When a heavy object oscillates, its mass increases the drag or damping force, but not the period of oscillation. Thus, it oscillate slowly.
When analyzing inelastic collisions, we need to consider the law of conservation of momentum, which states that the total momentum, p, of the closed system is a constant. In the case of inelastic collisions, the momentum of the combined mass after the collision is equal to the sum of the momentum of each of the initial masses.
p1+p2+...=pf
In our case we only have two masses, which makes our problem fairly simple. Lets plug in the formula for momentum; p=mv.
m1v1+m2v2=(m1+m2)vf
To find the velocity of the combined mass we simply rearrange the terms.
vf=m1v1+m2v2m1+m2
Plug in the values given in the problem.
vf=(3.0kg)(1.4m/s)+(2.0kg)(0m/s)03.0kg+2.0kg
vf=.84m/s
Answer:
The answer is
.
Explanation:
You are asking only for the total volume, so the important data here is the surface area of the earth's crust,

and the average thickness of the earth's crust,
.
Imagine that you can stretch the surface area as if it were a blanket, now if you want to calculate its volume, you just need to multiply its area by its thickness,
.