1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alex41 [277]
3 years ago
11

The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles

are mA = 340 kg, mB = 567 kg, and mC = 139 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C.

Physics
1 answer:
miss Akunina [59]3 years ago
3 0

Formula of the gravitational force between two particles:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67 \cdot 10^{-11} Nm^2 kg^{-2} is the gravitational constant

m1 and m2 are the masses of the two particles

r is their distance


(a) particle A

The gravitational force exerted by particle B on particle A is

F_B=G\frac{m_A m_B}{r^2}=(6.67 \cdot 10^{-11}) \frac{(340 kg)(567 kg)}{(0.500 m)^2}=5.14 \cdot 10^{-5} N to the right

The gravitational force exerted by particle C on particle A is

F_C=G\frac{m_A m_C}{r^2}=(6.67 \cdot 10^{-11}) \frac{(340 kg)(139 kg)}{(0.500 m+0.250m)^2}=5.6 \cdot 10^{-6} N to the right

So the net gravitational force on particle A is

F_A = F_B + F_C =5.14 \cdot 10^{-5} N+5.6 \cdot 10^{-6} N=5.7 \cdot 10^{-5} N to the right


(b) Particle B

The gravitational force exerted by particle A on particle B is

F_A=G\frac{m_A m_B}{r^2}=(6.67 \cdot 10^{-11}) \frac{(340 kg)(567 kg)}{(0.500 m)^2}=-5.14 \cdot 10^{-5} N to the left

The gravitational force exerted by particle C on particle B is

F_C=G\frac{m_B m_C}{r^2}=(6.67 \cdot 10^{-11}) \frac{(567 kg)(139 kg)}{(0.250 m)^2}=8.41 \cdot 10^{-5} N to the right

So the net gravitational force on particle B is

F_B = F_A + F_C =-5.14 \cdot 10^{-5} N+8.41 \cdot 10^{-5} N=3.27 \cdot 10^{-5} N to the right


(c) Particle C

The gravitational force exerted by particle A on particle C is

F_A=G\frac{m_A m_C}{r^2}=(6.67 \cdot 10^{-11}) \frac{(340 kg)(139 kg)}{(0.500 m+0.250m)^2}=-5.6 \cdot 10^{-6} N to the left

The gravitational force exerted by particle B on particle C is

F_B=G\frac{m_B m_C}{r^2}=(6.67 \cdot 10^{-11}) \frac{(567 kg)(139 kg)}{(0.250 m)^2}=-8.41 \cdot 10^{-5} N to the left

So the net gravitational force on particle C is

F_C = F_B + F_A =-8.41 \cdot 10^{-5} N-5.6 \cdot 10^{-6} N=-8.97 \cdot 10^{-5} N to the left



You might be interested in
A bird is flying north with a mass of 2.5kg has a momentum of 17.5kg m/s at what velocity is it flying
klasskru [66]
Momentum = mass • velocity
v= 17.5/2.5
= 7 m/s
8 0
3 years ago
Read 2 more answers
Why are scientific theories modified, but seldom discarded?
scoundrel [369]
Because some scientific theories are true and some are false
5 0
3 years ago
Read 2 more answers
You and your lab partner, Mel, are engrossed in a chemistry activity using beans to compute the average atomic mass of an elemen
Vikentia [17]

Answer:

C:

Explanation:

either C or A but A seems unlikely after multiple attempts. Although the question doesn't make it clear whether the balance is electric either way it could be wrong in someway and seems to be the most likely.

5 0
3 years ago
Read 2 more answers
A bullet is fired at an angle θ above the horizontal with an initial velocity of 800 m/s from the top of an 80 m high tower. Wha
Irina-Kira [14]

Answer:

pahingi po ng pic pls para masagutang kopo iyan

6 0
2 years ago
A train is moving in a straight railway where it covered one third of the distance with
Alexxandr [17]

Answer:

<em>The average speed of the train is 45 km/h</em>

Explanation:

<u>Speed</u>

It's defined as the distance (d) per unit of time (t) traveled by an object. The formula is:

\displaystyle v=\frac{d}{t}

Let's call x the total distance covered by the train. It covered d1=1/3x with a speed of v1=25 km/h. The time taken is calculated solving for t:

\displaystyle t_1=\frac{d_1}{v_1}

\displaystyle t_1=\frac{1/3x}{25}

\displaystyle t_1=\frac{x}{75}

Now the rest of the distance:

d2 = x - 1/3x = 2/3x

Was covered at v2=75 km/h. Thus the time taken is:

\displaystyle t_2=\frac{d_2}{v_2}

\displaystyle t_2=\frac{2/3x}{75}

\displaystyle t_2=\frac{2x}{225}

The total time is:

\displaystyle t_t=\frac{x}{75}+\frac{2x}{225}

\displaystyle t_t=\frac{3x}{225}+\frac{2x}{225}

\displaystyle t_t=\frac{5x}{225}

Simplifying:

\displaystyle t_t=\frac{x}{45}

The average speed is the total distance divided by the total time:

\displaystyle \bar v=\frac{x}{\frac{x}{45}}

Simplifying:

\boxed{\displaystyle \bar v=45\ km/h}

The average speed of the train is 45 km/h

5 0
3 years ago
Other questions:
  • Polly is pushing a box across the floor with a force of 30 n. the force of gravity is –8 n, and the normal force is 8 n. which v
    6·2 answers
  • Which style of painting is the Peale family known for?
    7·2 answers
  • 26500 in scientific notation
    13·2 answers
  • A trombone has a variable length. When a musician blows into the mouthpiece and causes air in the tube of the horn to vibrate, t
    11·1 answer
  • A raindrop or partially melted snowflake that freezes into a pellet of ice in a deep subfreezing layer of air near the surface i
    8·1 answer
  • a moving truck takes a much longer time to stop than that taken by a car when brakes are pressed at the same time​
    14·1 answer
  • If you catch the ruler 4.9 cm from the lower end, what is your reaction time?
    8·1 answer
  • In lab, a radiation detector was used to calculate the background radiation. The
    6·1 answer
  • What is the acceleration of an object with a mass of
    9·1 answer
  • What are the types of realistic fiction?.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!