Imagine we have <span>mass of solvent 1kg (1000g)
According to that: </span>

= 4.8 mole * 98 g/mole = 470g


m(H2SO4) which is =<span>470g
</span><span>m(solution) = m(H2SO4) + m(solvent) = 470 + 1000 = 1470 g
d(solution) = m(solution) / V(solution) =>
=> 1.249 g/mL = 1470 g / V(solution) =></span>
Answer:
2-ethoxy-2-methylpropan-1-ol
Explanation:
On this reaction, we have an "<u>epoxide"</u> (2-methyl-1,2-epoxypropane). Additionally, we have <u>acid medium</u> (due to the sulfuric acid
). The acid medium will produce the <u>hydronium ion</u> (
). This ion would be attacked by the oxygen of the epoxide. Then a <u>carbocation</u> would be produced, in this case, the most stable carbocation is the <u>tertiary one</u>. Then an <u>ethanol</u> molecule acts as a nucleophile and will attack the carbocation. Finally, a <u>deprotonation </u>step takes place to produce <u>2-ethoxy-2-methylpropan-1-ol</u>.
See figure 1
I hope it helps!
Assuming that both cases describe hydrogen‑like atoms with one electron, More energy is emitted or absorbed for case 2. The correct option is D.
<h3>What is emitting of energy, by electron?</h3>
The energy of the electron decreases as it changes levels, and emission of photons happens in the atom.
With the electron moving from a higher to a lower energy level, the photon is emitted. The photon's energy is the same as the energy lost by an electron moving to a lower energy level.
Thus, the correct option is D, More energy is emitted or absorbed for case 2.
Learn more about emitting of energy
brainly.com/question/14350185
#SPJ4
Tropical or warm air masses form in the tropics and have low air pressure.
polar or cold air masses form north of 50 degrees north latitude and south of 50 degrees south latitude