Answer: 1709.4 Joules
Explanation:
The quantity of Heat Energy (Q) released on cooling a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since Q = ?
M = 18.5 grams
Recall that the specific heat capacity of copper C = 0.385 J/g.C
Φ = 285°C - 45°C = 240°C
Then, Q = MCΦ
Q = 18.5grams x 0.385 J/g.C x 240°C
Q = 1709.4 Joules
Thus, 1709.4 Joules is released when copper is cooled.
we have,
wavelenght=c/f
where c= 3×10^8 m/s
f=6.3×10^12 s^-1
so wavelength=(3×10^8)/(6.3×10^12)
=0.476×10^-4 m
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Na3P is the formula if that helps
Answer:
5010J
Explanation:
The following data were obtained from the question:
Mass (m) = 15g
Heat of fusion (ΔHf) = 334J/g
Heat required (Q) =..?
The heat energy required to melt the ice can be obtained as follow:
Q = m·ΔHf
Q = 15 x 334
Q = 5010J
Therefore, the heat energy required to melt the ice is 5010J.