Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
Answer:
O, N, C, H
Explanation:
Electronegativity of an element is the property that combines the ability of its atom to lose or gain electrons. It measures the relative tendency with which the atoms of the element attracts valence electrons in a chemical bond.
On the periodic table, Electronegativity increases across the period but decreases down a group.
To solve the given problem, let us use thE Pauling's table of electronegativities to compare the electronegativities of the elements.
On the table:
C = 2.5
H = 2.1
O = 3.5
N = 3.0
In terms of decreasing electronegativities, the atoms are arranged as:
O N C H
Answer:
C is the reaction intermediate.
Explanation:
A reaction intermediate is a molecular structure that is formed during the reaction but then is converted in the final products.
Usually, these reaction intermediates are unestable and, for that reason, the lifetime of these structures is low.
In the reaction, you can see in the first step C is produced, but also, in the second step reacts producing D. As is produced and, immediately consumed,
<h3>C is the reaction intermediate.</h3>
7. An exothermic reaction
8. The bonds are forming