Answer:
Use the principle of momentum
Initial momentum = final momentum
Momentum formula = Mass * Velocity
Explanation:
Answer:
d) 2Fr
Explanation:
We know that the work done in moving the charge from the right side to the left side in the k shell is W = ∫Fdr from r = +r to -r. F = force of attraction between nucleus and electron on k shell. F = qq'/4πε₀r² where q =charge on electron in k shell -e and q' = charge on nucleus = +e. So, F = -e × +e/4πε₀r² = -e²/4πε₀r².
We now evaluate the integral from r = +r to -r
W = ∫Fdr
= ∫(-e²/4πε₀r²)dr
= -∫e²dr/4πε₀r²
= -e²/4πε₀∫dr/r²
= -e²/4πε₀ × -[1/r] from r = +r to -r
W = e²/4πε₀[1/-r - 1/+r] = e²/4πε₀[-2/r} = -2e²/4πε₀r.
Since F = -e²/4πε₀r², Fr = = -e²/4πε₀r² × r = = -e²/4πε₀r and 2Fr = -2e²/4πε₀r.
So W = -2e²/4πε₀r = 2Fr.
So, the amount of work done to bring an electron (q = −e) from right side of hydrogen nucleus to left side in the k shell is W = 2Fr
When you're using a crowbar to lift a large rock, you are working against the force called


Gravity on Earth is what gives weight to all objects, it's defined as all things that have mass or energy are gravitated towards each other. Therefore when you're using a crowbar to lift a large rock, the weight is caused by
gravity.
I hope this helps you!
In Euclidean geometry parallel lines never intersect. But in non-Euclidean geometry parallel lines can either curve away from each other, or curve towards each other. Example : the black lines that wrap themselves around the basketball.
Answer: B ) non-Euclidean