Answer:
1.) AgNO₃
2.) 0.563 moles AgBr
Explanation:
The limiting reagent is the reagent that is used up completely during a reaction. It can be identified by calculating which reactant produces the smallest amount of product. This can be done by determining the number of moles of each reagent (via molarity conversion). and then converting it to moles of the product (via mole-to-mole ratio).
AgNO₃ (aq) + KBr (aq) ---> AgBr (s) + KNO₃ (aq)
Molarity (M) = moles / liters
100 mL = 1 L
AgNO₃
45.0 mL / 100 = 45.0 L
1.25 M = ? moles / 0.450 L
? moles = 0.563 moles
KBr
75.0 mL / 100 = 0.750 L
0.800 M = ? moles / 0.750 L
? moles = 0.600 moles
In this case, there is no need to use the mole-to-mole ratio because all of the coefficients are one in the reaction (the amount of the limiting reagent used is the same amount of product produced). Since AgNO₃ produces the smaller amount of product, it is the limiting reagent.
Answer: b. is positive and is positive.
Explanation:-
As the temperature of the pack drops, the energy has been absorbed from the pack for dissolution of in water. Thus as the energy has been absorbed in the reaction, the reaction is endothermic and the change in enthalpy i.e. is positive.
The entropy is the measure of degree of randomness. The entropy increases when the randomness increases and the entropy decreases when the randomness decreases. When a substance dissolves in water, it dissociate into ions and hence the randomness increases thus the change in entropy i.e. is positive.
Answer:
They both have the same number of atoms
Explanation:
The number that indicates the amount of particles in a compound is the Avogadro's number (NA).
It does not matter the mass of compound we have, If we have 1 mol we will be sure that we are talking about 6.02×10²³ particles
6.02×10²³ represents the amount of atoms in twelve grams of 12-pure carbon and it is considered a reference to measure the amount of all kinds of substances present in a given system.
Answer:
C. 17 grams.
Explanation:
∵ mass % = [mass of solute/mass of solution] x 100.
mass of solute (NaCl) = ??? g & mass of solution = 140.0 g.
<em>∴ mass of NaCl = (mass %)(mass of solution)/100 </em>= (12.0)(140.0)/100 = <em>16.80 g ≅ 17.0 g.</em>
D.radiation that’s the right answer