Answer:
N2C14
Explanation:
<em> determined the bond type by looking if it is a metal or nometal</em>
<em>Ionic Bond:NM+M</em>
<em>Covalent Bond:NM+NM</em>
The energy required to raise the temperature of 3 kg of iron from 20° C to 25°C is 6,750 J( Option B)
<u>Explanation:</u>
Given:
Specific Heat capacity of Iron= 0.450 J/ g °C
To Find:
Required Energy to raise the Temperature
Formula:
Amount of energy required is given by the formula,
Q = mC (ΔT)
Solution:
M = mass of the iron in g
So 3 kg = 3000 g
C = specific heat of iron = 0.450 J/ g °C [ from the given table]
ΔT = change in temperature = 25° C - 20°C = 5°C
Plugin the values, we will get,
Q = 3000 g × 0.450 J/ g °C × 5°C
= 6,750 J
So the energy required is 6,750 J.
Answer:

Explanation:
Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution. It is represented as
The equation for the ionization of magnesium phosphate is given as:
When the solubility of
is S moles/liter, then the solubility of
will be 3S moles\liter and solubility of
will be 2S moles/liter.
Thus S = 0.173 g/L or

I believe it’s true when particles move they create heat
Answer:
Find g
Write your answer in simplest radical form