Arrhenius theory is a theory about acids and bases. It says that acids are those substances that produces hydrogen ions (H+) when in solution and bases are the substances that dissiociates and produces hydroxide ions (OH-). It was introduced by Svante Arrhenius.
Percent error (%)= ![\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%20%7C%20Accepted%20value%20-%20Measured%20value%20%5Cright%20%7C%7D%7BAccepted%20value%7D%5Ctimes%20100)
Accepted value is true value.
Measured values is calculated value.
In the question given Accepted value (true value) = 63.2 cm
Given Measured(calculated values) = 63.1 cm , 63.0 cm , 63.7 cm
1) Percent error (%) for first measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.1 cm
Percent error (%)= ![\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%20%7C%20Accepted%20value%20-%20Measured%20value%20%5Cright%20%7C%7D%7BAccepted%20value%7D%5Ctimes%20100)
![Percent error = \frac{\left | 63.2 - 63.1 \right |}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B%5Cleft%20%7C%2063.2%20-%2063.1%20%5Cright%20%7C%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = \frac{0.1}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B0.1%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = 0.00158\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%200.00158%5Ctimes%20100)
Percent error = 0.158 %
2) Percent error (%) for second measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.0 cm
Percent error (%)= ![\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%20%7C%20Accepted%20value%20-%20Measured%20value%20%5Cright%20%7C%7D%7BAccepted%20value%7D%5Ctimes%20100)
![Percent error = \frac{\left | 63.2 - 63.0 \right |}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B%5Cleft%20%7C%2063.2%20-%2063.0%20%5Cright%20%7C%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = \frac{0.2}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B0.2%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = 0.00316\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%200.00316%5Ctimes%20100)
Percent error = 0.316 %
3) Percent error (%) for third measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.7 cm
Percent error (%)= ![\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%20%7C%20Accepted%20value%20-%20Measured%20value%20%5Cright%20%7C%7D%7BAccepted%20value%7D%5Ctimes%20100)
![Percent error = \frac{\left | 63.2 - 63.7 \right |}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B%5Cleft%20%7C%2063.2%20-%2063.7%20%5Cright%20%7C%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = \frac{\left | -0.5 \right |}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B%5Cleft%20%7C%20-0.5%20%5Cright%20%7C%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = \frac{(0.5)}{63.2}\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%20%5Cfrac%7B%280.5%29%7D%7B63.2%7D%5Ctimes%20100)
![Percent error = 0.00791\times 100](https://tex.z-dn.net/?f=Percent%20error%20%3D%200.00791%5Ctimes%20100)
Percent error = 0.791 %
Percent error for each measurement is :
63.1 cm = 0.158%
63.0 cm = 0.316%
63.7 cm = 0.791%
Answer: 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Explanation:
According to the dilution law,
![C_1V_1=C_2V_2](https://tex.z-dn.net/?f=C_1V_1%3DC_2V_2)
where,
= concentration of stock solution = 12.0 M
= volume of stock solution = ?
= concentration of diluted solution= 6.00 M
= volume of diluted acid solution = 500 ml
Putting in the values we get:
![12.0\times V_1=6.00\times 500](https://tex.z-dn.net/?f=12.0%5Ctimes%20V_1%3D6.00%5Ctimes%20500)
![V_1=250ml](https://tex.z-dn.net/?f=V_1%3D250ml)
Thus 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.