Answer: The total number of logs in the pile is 6.
Step-by-step explanation: Given that a stack of logs has 32 logs on the bottom layer. Each subsequent layer has 6 fewer logs than the previous layer and the top layer has two logs.
We are to find the total number of logs in the pile.
Let n represents the total number of logs in the pile.
Since each subsequent layer has 6 fewer logs then the previous layer, so the number of logs in each layer will become an ARITHMETIC sequence with
first term, a = 32 and common difference, d = -6.
We know that
the n-th term of an arithmetic sequence with first term a and common difference d is

Since there are n logs in the pile, so we get

Thus, the total number of logs in the pile is 6.
The inequality would start out looking like this:

Now it's just a matter of solving the inequalities simultaneously. Get rid of the fraction by multiplying everything by 9:

Then distribute the 5 into the parenthesis:

Now add 160 everywhere:

and finally divide everything by 5:
-22<F<266
-->
GN
and
-->
GY
I'm just doing this to fill up the required characters cool I think I'm good now.
Round about...90 feet per second
Answer:
the time taken for the radioactive element to decay to 1 g is 304.8 s.
Step-by-step explanation:
Given;
half-life of the given Dubnium = 34 s
initial mass of the given Dubnium, m₀ = 500 grams
final mass of the element, mf = 1 g
The time taken for the radioactive element to decay to its final mass is calculated as follows;
![1 = 500 (0.5)^{\frac{t}{34}} \\\\\frac{1}{500} = (0.5)^{\frac{t}{34}}\\\\log(\frac{1}{500}) = log [(0.5)^{\frac{t}{34}}]\\\\log(\frac{1}{500}) = \frac{t}{34} log(0.5)\\\\-2.699 = \frac{t}{34} (-0.301)\\\\t = \frac{2.699 \times 34}{0.301} \\\\t = 304.8 \ s](https://tex.z-dn.net/?f=1%20%3D%20500%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%20%5C%5C%5C%5C%5Cfrac%7B1%7D%7B500%7D%20%3D%20%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%3D%20log%20%5B%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20log%280.5%29%5C%5C%5C%5C-2.699%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20%28-0.301%29%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B2.699%20%5Ctimes%2034%7D%7B0.301%7D%20%5C%5C%5C%5Ct%20%3D%20304.8%20%5C%20s)
Therefore, the time taken for the radioactive element to decay to 1 g is 304.8 s.