Answer: the density changed, the salt dissolved in the water, the salt and the water can still be separated into their individual molecules.
Explanation: physical changes are changes in size, shape, or state. Another way to think about a physical change is any change not involving a change in the substance’s chemical identity. You cannot write a chemical equation for salt water because the chemical identity is still salt AND water
trust me i did it
The process of changing from one phase of matter to another is a physical matter.
Explanation:
- In chemical reactions, chemical changes occur.
- Atoms are simply rearranged and new bonds are formed.
- Chemical reactions are driven by a need for atoms to attain stability in their structure.
- In all chemical reactions, a reactant or reactants gives new product i.e new substances are formed.
- Most these reactions are not easily reversible.
- They are usually accompanied by the release of energy.
Learn more:
Chemical change brainly.com/question/9388643
#learnwithBrainly
Continuous. Discrete values are values like 1, 2, 3, 4, etc. - they're values that are <em>distinct</em>, and typically there's some idea of a <em>next </em>and a <em>previous </em>value. When we're counting whole numbers, there's a definitive answer to which number comes after, and which number comes before. With continuous values, there's no real "next" or "last" value.
Motion is measured with <em>continuous </em>values; a train might move 300 yards in 1 minute, but we can look at smaller and smaller chunks of time to keep getting shorter and shorter distances. There is no <em />"next" distance the train moves after those 300 yards - it just doesn't make sense for there to be.
It's also measured <em>quantitatively</em>, not <em>qualitatively</em>. This just means that we can use numerical values to measure it, rather than other descriptors like color, smell, or taste.
Answer:
Vc = 2.41 v
Explanation:
voltage (v) = 16 v
find the voltage between the ends of the copper rods .
applying the voltage divider theorem
Vc = V x (
)
where
- Rc = resistance of copper =
(l = length , a = area, ρ = resistivity of copper)
- Ri = resistance of iron =
(l = length , a = area, ρ₀ = resistivity of copper)
Vc = V x (
)
Vc = V x (
)
Vc = V x (
)
where
- ρ = resistivity of copper = 1.72 x 10^{-8} ohm.meter
- ρ₀ = resistivity of iron = 9.71 x 10^{-8} ohm.meter
Vc = 16 x (
)
Vc = 2.41 v