S ?
U 0m/s
V ?
A 0.1m/s^2
T 2min (120 sec)
S=ut+0.5at^2
S=0(120 sec)+0.5(0.1m/s^2)(120 sec)^2
S=720m
Distance double 720m*2=1440m
V^2=u^2+2as
V^2=(0)^2+2(0.1 m/s^2)(1440m)
V^2=288
V= square root of 288=12 root 2=16.97 to 2 decimal places
Answer:
0.752 m/s
Explanation:
m1 = 3.00kg
u1 = 5.05m/s
m2 = 2.76kg
u2 = -3.66m/s
According to the law of conservation of momentum,
m1u1 + m2u2 = (m1+m2)v
3(5.05) + 2.76(-3.66) = (5.05+2.76)v
15.15 - 9.2736 = 7.81v
5.8764 = 7.81v
v = 5.8764/7.81
v = 0.752m/s
C Occupational Safety and Health Administration
Answer:
Mutual inductance, 
Explanation:
(a) A toroidal solenoid with mean radius r and cross-sectional area A is wound uniformly with N₁ turns. A second thyroidal solenoid with N₂ turns is wound uniformly on top of the first, so that the two solenoids have the same cross-sectional area and mean radius.
Mutual inductance is given by :

(b) It is given that,


Radius, r = 10.6 cm = 0.106 m
Area of toroid, 
Mutual inductance, 

or

So, the value of mutual inductance of the toroidal solenoid is
. Hence, this is the required solution.
Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m