Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .
To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Answer to A spring<span> is </span>stretched<span> to a </span>displacement<span> of </span>3.4 m<span> from </span>equilibrium<span>. </span>Then<span> the </span>spring<span> is</span>released<span> and ... </span>Then<span> the </span>spring<span> is </span>released<span> and </span>allowed<span> to </span>recoil<span> to a </span>displacement<span> of </span>1.9 m<span> from</span>equilibrium<span>. The </span>spring constant<span> is </span>11 N/m<span>. What </span>best describes<span> the </span>work involved<span> as the </span>spring recoils<span>? A)87 J of </span>work<span> is performed ...</span>
Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107