The answer is 1 0 2 3 8
Glad to help :D
Answer:
~8.66cm
Step-by-step explanation:
The length of a diagonal of a rectangular of sides a and b is

in a cube, we can start by computing the diagonal of a rectangular side/wall containing A and then the diagonal of the rectangle formed by that diagonal and the edge leading to A. If the cube has sides a, b and c, we infer that the length is:

Using this reasoning, we can prove that in a n-dimensional space, the length of the longest diagonal of a hypercube of edge lengths
is

So the solution here is

15818 ?? This is making me get a headache
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
The answer is 322 m/s. hope this helps :)
1 mi/ 5s x 1609 m/ 1 mi =322 m/s