m=58 (Slope of given equation)
C=43 (Y-Intercept)
Step-by-step explanation:
Step 1:
Let the general equation y intercept is given by Y=mX+C
Here Y= Y value
m= Slope of equation
C= Y-Intercept
Step 2:
The given equation is given by Y=58X+43
Here m= 58 is the Slope of the given equation
C= 43 is the Y-Intercept
Answer:
24.08
Step-by-step explanation:
We use the Pythagorean theorem and we get (16)^2 + (18)^2 = (x)^2
256 + 324 = x^2
x^2 = 580
x is about 24.08.
Use phytagorean theorem to solve the problem
c² = a² + b²
with c as hypotenuse, a and b are the two sides which are perpendicular to each other.
Plug the numbers into the formula
c² = a² + b²
c² = (46.3)² + 39²
c² = 2,143.69 + 1,521
c² = 3,664.69
c = √3,664.69
c = 60.53668..
to the nearest hundredth
c = 60.54
The length of the hypotenuse is 60.54 m
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so

Answer:
4x + 3y = 12
Step-by-step explanation: