The "scissors" of the molecular biology are: DNA Restriction enzymes.
A restriction enzyme is a protein capable of cleaving a DNA fragment at a characteristic nucleotide sequence called a restriction site. Each restriction enzyme thus recognizes a specific site. Several hundred restriction enzymes are currently known.
Naturally present in a large number of species of bacteria, these enzymes have become important tools in genetic engineering.
The "glue" of the molecular biology are: DNA ligase
In molecular biology, DNA ligases are ligase-class enzymes that catalyze the formation of a phosphodiester bond between two segments of DNA. DNA ligases are involved in several essential cellular processes of DNA metabolism: in DNA replication, suture of Okazaki fragments, and in DNA repair and homologous recombination.
The use of these tools in molecular biology: Cloning
Molecular cloning is one of the bases of genetic engineering. It consists of inserting a DNA fragment (called insert) in an appropriate vector such as a plasmid for example. The new plasmid thus created will then be introduced into a host cell, generally the Escherichia coli bacterium. This will then be selected and multiplied to obtain a large amount of the plasmid of interest. Cloning a gene involves inserting it into a plasmid. A clone will be the bacterial transformant that contains this particular plasmid. In this case we speak of clone because all the individuals of the bacterial colony are genetically identical. Molecular cloning is thus different from reproductive cloning (creating an individual genetically identical to another but of a different age) or therapeutic cloning (making tissues from stem cells to perform transplants compatible with the recipient).
Molecular cloning requires restriction enzymes capable of cleaving the DNA, and DNA ligase capable of re-gluing the DNA fragments. Ligase was isolated for the first time from T4 bacteriophage. This enzyme is involved in the repair and replication of DNA. It can bind DNA fragments with compatible sticky ends. At higher concentration, this enzyme is also able to bind two ends of DNA as shown here. T4 DNA ligase works using ATP and Mg ++. It has an activity optimum of 16 ° C, but remains active at room temperature.
Answer:
Explanation:
The nitrogen cycle is an important cycle to the atmosphere. Nitrogen is an essential part of biological molecules such as proteins and nucleic acid, which makes nitrogen essential for all living organisms. Nitrogen makes up 78 percent of the atmosphere.
Answer: For the scientist to have alternative hypothesis considered, it is imperative he takes certain steps, this steps will ascertain the scientific claims already made about the evolution of species.
Therefore,the scientist will simply test the alternative hypotheses inorder to know that they are incorrect.
This testing of hypotheses to ascertain their incorrectness is very useful in the study of fossils.
Answer:
Airways diameter can influence the airflow resistance.
Explanation:
Airflow resistance follows the same principle followed by the airway resistance. This is the resistance offered during the pulmonary blood flow.
Airways diameter affects the airflow resistance. If the diameter of airway is increased, the airflow resistance decreases and air can flow easily in the body. The decrease in the airway diameter (dilution) increases the airflow resistance of the blood artery.
<span>Evaporation of warm surface water increases the amount of moisture in the colder, drier air flowing immediately above the lake surface. With continued evaporation, water vapor in the cold air condenses to form ice-crystal clouds, which are transported toward shore.</span>
By the time these clouds reach the shoreline, they are filled with snowflakes too large to remain suspended in the air and consequently, they fall along the shoreline as precipitation. The intensity of lake effect snowfall can be enhanced by additional lifting due to the topographical features (hills) along the shoreline. Once the snow begins to melt, the water is either absorbed by the ground and becomes groundwater, or goes returns back to the lake as runoff.
Lake effect snow events can produce tremendous amounts of snow. One such event was the Cleveland, Ohio Veteran's Day Snowstorm from November of 1996, where local storm snowfall totals exceeded 50 inches over two to three days.
<span>A Summary of the Hydrologic Cyclebringing all the pieces together<span>
<span>Animation by: Bramer</span></span>The hydrologic cycle begins with the evaporation of water from the surface of the ocean. As moist air is lifted, it cools and water vapor condenses to form clouds. Moisture is transportedaround the globe until it returns to the surface as precipitation. Once the water reaches the ground, one of two processes may occur; 1) some of the water may evaporate back into the atmosphere or 2) the water may penetrate the surface and become groundwater. Groundwater either seeps its way to into the oceans, rivers, and streams, or is released back into the atmosphere through transpiration. The balance of water that remains on the earth's surface is runoff, which empties into lakes, rivers and streams and is carried back to the oceans, where the cycle begins again.Lake effect snowfall is good example of the hydrologic cycle at work. Below is a vertical cross-section summarizing the processes of the hydrologic cycle that contribute to the production of lake effect snow. The cycle begins as cold winds (horizontal blue arrows) blow across a large lake, a phenomena that occurs frequently in the late fall and winter months around the Great Lakes.</span>