1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
2 years ago
7

What is the length of a diagonal of a square with a side length of 8? A. B. C. D. Please select the best answer from the choices

provided
Mathematics
2 answers:
Annette [7]2 years ago
8 0
The diagonal of a square is always √2 times the length of the side. Your diagonal length is
  8√2
  11.31
. . . . rounded to the nearest hundredth
Juli2301 [7.4K]2 years ago
6 0
Diagonal of a square is√2 times it's side ,
Hence diagonal = 8√2 = 11.31 units Ans.
You might be interested in
Write the<br> equation of a<br> line that is<br> vertical and<br> goes through<br> the point (4,-2)
attashe74 [19]

Answer:

x = 4

Step-by-step explanation:

6 0
2 years ago
What is the area of a garden that measures 4mx4mx6mx4mx10mx8m
topjm [15]

The area of the garden is 120 square metre

<h2>Explanation:</h2>

The picture of the garden is shown below. In this problem, we have:

  • One square
  • Two rectangles

Recall that the area of a square is given by:

A_{s}=L^2 \\ \\ A_{s}:Area \ of \ a \ square \\ L:Side \ of \ the \ square

On the other hand, the area of a rectangle is given by:

A_{r}=L_{1}\times L_{2} \\ \\ \\ A_{r}:Area \ of \ a \ rectangle \\ \\ L_{1}:Side \ 1 \ of \ the \ rectangle \\ \\ L_{2}:Side \ 2 \ of \ the \ rectangle

Therefore:

FOR THE SQUARE:

L=4m \\ \\ \\ Substituting \ values: \\ \\ \\ A_{s}=4^2 \\ \\ \boxed{A_{s}=16m^2}

FOR THE RECTANGLE 1:

L_{1}=6m \\ L_{2}=4m \\ \\ \\ Substituting \ values: \\ \\ \\ A_{r_{1}}=6(4) \\ \\ \boxed{A_{r_{1}}=24m^2}

FOR THE RECTANGLE 2:

L_{1}=10m \\ L_{2}=8m \\ \\ \\ Substituting \ values: \\ \\ \\ A_{r_{2}}=10(8) \\ \\ \boxed{A_{r_{2}}=80m^2}

Finally, the area of a garden is the sum of the three areas:

A_{total}=A_{s}+A_{r_{1}}+A_{r_{2}} \\ \\ A_{total}=16m^2+24m^2+80m^2 \\ \\ A_{total}=16+24+80 \\ \\ \boxed{A_{total}=120m^2}

<h2>Learn more:</h2>

Area of a pizza: brainly.com/question/12878495

#LearnWithBrainly

4 0
3 years ago
Can atriangle be formed with side lengths of 5cm. 10cm and 15cm
andreyandreev [35.5K]
Theorem of cosine:
a²=b²+c²-2bc(cos α)  ⇒cos α=-(a²-b²-c²) / 2bc

In this case:
a=15 cm
b=10 cm
c=5 cm

cos α=-(15²-10²-5²) / 2*10*5
cos α=-100 / 100
cos α=-1

A=arc cos -1=180º  This is impossible, because:

A+B+C=180º; then  B=C=0º  This is impossible for make a triangle  (B>0 and C>0 if we want to make a triangle).  

Therefore: it is not possible can make a triangle with side lengths of 5 cm, 10 cm and 15 cm.

3 0
3 years ago
Read 2 more answers
Alexander invested $320 in an account paying an interest rate of 1.5% compounded annually. Assuming no deposits or withdrawls we
boyakko [2]

Answer:

The amount is $418.35 and the interest is $98.35

Step-by-step explanation:

4 0
2 years ago
Hi im having troble cobineing like terms -10a - 9n + 16 - 30 + 3n + 15a + 50 + a​
goldenfox [79]

Answer:

6a-6n+36

Step-by-step explanation:

-10a-9n+16-30+3n+15a+50+a

Combine a...

-10a+15a= 5a+a=6a

Combine n...

6a-9n+16-30+3n+50

-9n+3n= -6n

6a-6n+ 16-30+50

Combine # w no variable

Answer: 6a-6n+36

5 0
3 years ago
Read 2 more answers
Other questions:
  • Can anyone help me with this problem
    5·2 answers
  • 1. Solve the shape equation puzzle?
    6·1 answer
  • Is 2/3 greater than 3/5
    7·2 answers
  • Can someone help me with two please?
    14·1 answer
  • Picture attached below<br><br> A. 1/3<br> B. 5/13<br> C. 4/5<br> D. 12/13
    10·1 answer
  • Please help I will give brianilst
    13·1 answer
  • Can you solve this?​
    10·2 answers
  • What is the ratio of 150 and 175
    11·1 answer
  • Which polynomial function could be represented by the graph below?
    9·1 answer
  • If , what is the truncation error for S4?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!