Answer: C = Q/4πR
Explanation:
Volume(V) of a sphere = 4πr^3
Charge within a small volume 'dV' is given by:
dq = ρ(r)dV
ρ(r) = C/r^2
Volume(V) of a sphere = 4/3(πr^3)
dV/dr = (4/3)×3πr^2
dV = 4πr^2dr
Therefore,
dq = ρ(r)dV ; dq =ρ(r)4πr^2dr
dq = C/r^2[4πr^2dr]
dq = 4Cπdr
FOR TOTAL CHANGE 'Q', we integrate dq
∫dq = ∫4Cπdr at r = R and r = 0
∫4Cπdr = 4Cπr
Q = 4Cπ(R - 0)
Q = 4CπR - 0
Q = 4CπR
C = Q/4πR
The value of C in terms of Q and R is [Q/4πR]
Answer:
m = 15.15 kg
Explanation:
Newton's Second Law of motion states that when an unbalanced force is applied on a body, an acceleration is produced in it in the direction of force. The component of force along the horizontal direction here, will be given by the Newton's Second Law as:
Fx = ma
F Cosθ = ma
where,
F = Magnitude of Force = 85 N
θ = Angle with horizontal = 27°
m = mass of object = ?
a = acceleration of object = 5 m/s²
Therefore,
85 N Cos 27° = m(5 m/s²)
m = 75.73 N/5 m/s²
<u>m = 15.15 kg</u>
Answer:
AS- X 3.42 Y 3. B) X Y c) x Ross TET V V. a 1.71 1.71 LLL LLL 2.42 N al
Explanation:
Answer:
F = 25530 N
Explanation:
F(net) = ma
F(net) = 2553 kg•(10) m/s² = 25530 N
Use formula of resistance for Parallel circuit
(refer to photo)
V = I * R
Voltage = Current * Resistance
I hope this helped.