1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
3 years ago
6

Two basketballs of equal mass are rolling toward each other at constant velocities. The first basketball (B1) has a velocity of

4.3 m/s, and the second basketball (B2) has a velocity of -4.3 m/s.
If these basketballs have a perfectly elastic collision, B1 will have a final velocity of _______, and B2 will have a final velocity
Physics
1 answer:
slamgirl [31]3 years ago
5 0

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

<u>Explanation:</u>

Velocity of B₁ = 4.3m/s

Velocity of B₂ = -4.3m/s

For perfectly elastic collision:, momentum is conserved

m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2

where,

m₁ = mass of Ball 1

m₂ = mass of Ball 2

v₁ = initial velocity of Ball 1

v₂ = initial velocity of ball 2

v'₁ = final velocity of ball 1

v'₂ = final velocity of ball 2

The final velocity of the balls after head on elastic collision would be

v'_2 = \frac{2m_1}{m_1+m_2} v_1 - \frac{m_1-m_2}{m_1+m_2} v_2\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} v_1 + \frac{2m_2}{m_1+m_2} v_2

Substituting the velocities in the equation

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.

You might be interested in
A lever is used to lift a boulder. The fulcrum is placed 1.60 m away from the end at which you exert a downward force, producing
KengaRu [80]
Ion even know maybe a,b,c,
5 0
2 years ago
Are we the same age as the universe because matter cannot be created nor destroyed
wlad13 [49]
No. We aren't the same age as the universe.
4 0
3 years ago
Read 2 more answers
The length of a 100 mm bar of metal increases by 0.3 mm when subjected to a temperature rise of 100°C. The coefficient of linear
Juli2301 [7.4K]

Answer:

α = 3×10^-5 K^-1

Explanation:

let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.

then, the coefficient of linear expansion is given by:

α = ΔL/(ΔT×L)

   = (0.3×10^-3)/(100)(100×10^-3)

   = 3×10^-5 K^-1

Therefore, the coefficient of linear expansion is 3×10^-5 K^-1

5 0
3 years ago
Insulators have very high .
Vlad1618 [11]

Answer:

Resistance to electrical currents

Explanation:

Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.

Insulators have very high resistance and are used to protect us from the flow of electricity.

5 0
3 years ago
a car is moving 8.80 m/s when it begins to accelerate at 2.45 m/s^2. how much time does it take to trav 138m. please help me (':
Ulleksa [173]

Answer:

7.6 s

Explanation:

Considering kinematics formula for final velocity as

v^{2}=u^{2}+2as

Where v and u are final and initial velocities, a is acceleration and s is distance moved.

Making v the subject then

v=\sqrt{u^{2}+2as}

Substituting 8.8 m/s for u, 138 m for s and 2.45 m/s2 for a then

v=\sqrt{8.8^{2}+2*2.45*138}\\v=27.45 m/s

Also, v=u+at and making t the subject of the formula

t=\frac {v-u}{a}

Substituting 27.45 m/s for v, 8.8 m/s for u and 2.45 m/s for a then

t=\frac {27.45-8.8}{2.45}=7.6122448979591\approx 7.6s

Therefore, it needs 7.6 seconds to travel

7 0
3 years ago
Other questions:
  • What is the central peak in the central Arzachel
    6·1 answer
  • A ? is a conductor installed on the supply side of a service or separately derived system to ensure the required electrical cond
    12·1 answer
  • What’s pasta used for?
    7·2 answers
  • You push a 45 kg wooden box across a wooden floor at a constant speed of 1.0 m/s. The coefficient of kinetic friction is 0.25. N
    12·1 answer
  • Who proposed the idea that gravity could actually bend light?
    8·1 answer
  • Formula One racers speed up much more quickly than normal passenger vehicles, and they also can stop in a much shorter distance.
    11·1 answer
  • A student wants to determine the speed of sound at an elevation of one mile. To do this the student performs an experiment to de
    8·1 answer
  • A ball is thrown so that its speed increases by 20 m/s in 10 seconds. What is the ball’s acceleration?
    13·1 answer
  • Does the apple scatter red light​
    15·1 answer
  • The releasing of an object from certain height to ground due to gravity is called____ A, Free falling B, Projectile C, curved li
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!