Answer:
https://gml.noaa.gov/education/info_activities/pdfs/LA_radiation.pdf
Explanation:
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
-- There's a force of 240N pushing her backwards.
-- She's maintaining a steady speed (of 2.5 m/s) .
-- In order to maintain a steady speed (no acceleration),
the forces on her must be balanced. So she's maintaining
a steady force of 240N forward.
-- Every time she moves 1 m forward, she does work of
(force) x (distance) = 240 joules.
-- She moves 2.5 meters forward every second.
So she's doing (240 x 2.5) = 600 joules of work every second.
-- 600 joules per second = 600 watts .